-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathGradientNumber.jl
229 lines (191 loc) · 7.8 KB
/
GradientNumber.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
immutable GradientNumber{N,T,C} <: ForwardDiffNumber{N,T,C}
value::T
partials::Partials{T,C}
GradientNumber(value, partials::Partials) = new(value, partials)
GradientNumber(value, partials::Tuple) = new(value, Partials(partials))
GradientNumber(value, partials::Vector) = new(value, Partials(partials))
end
typealias GradNumTup{N,T} GradientNumber{N,T,NTuple{N,T}}
typealias GradNumVec{N,T} GradientNumber{N,T,Vector{T}}
GradientNumber{N,T}(value::T, grad::NTuple{N,T}) = GradientNumber{N,T,NTuple{N,T}}(value, Partials(grad))
GradientNumber{T}(value::T, grad::T...) = GradientNumber(value, grad)
##############################
# Utility/Accessor Functions #
##############################
@inline partials(g::GradientNumber) = g.partials
@inline value(g::GradientNumber) = g.value
@inline grad(g::GradientNumber) = data(partials(g))
@inline hess(g::GradientNumber) = error("GradientNumbers do not store Hessian values")
@inline tens(g::GradientNumber) = error("GradientNumbers do not store tensor values")
@inline eltype{N,T,C}(::Type{GradientNumber{N,T,C}}) = T
@inline npartials{N,T,C}(::Type{GradientNumber{N,T,C}}) = N
#####################
# Generic Functions #
#####################
isconstant(g::GradientNumber) = iszero(partials(g))
==(a::GradientNumber, b::GradientNumber) = value(a) == value(b) && partials(a) == partials(b)
isequal(a::GradientNumber, b::GradientNumber) = isequal(value(a), value(b)) && isequal(partials(a), partials(b))
hash(g::GradientNumber) = isconstant(g) ? hash(value(g)) : hash(value(g), hash(partials(g)))
hash(g::GradientNumber, hsh::UInt64) = hash(hash(g), hsh)
function read{N,T,C}(io::IO, ::Type{GradientNumber{N,T,C}})
value = read(io, T)
partials = read(io, Partials{T,C}, N)
return GradientNumber{N,T,C}(value, partials)
end
function write(io::IO, g::GradientNumber)
write(io, value(g))
write(io, partials(g))
end
########################
# Conversion/Promotion #
########################
@inline zero{N,T,C}(G::Type{GradientNumber{N,T,C}}) = G(zero(T), zero_partials(C, N))
@inline one{N,T,C}(G::Type{GradientNumber{N,T,C}}) = G(one(T), zero_partials(C, N))
@inline rand{N,T,C}(G::Type{GradientNumber{N,T,C}}) = G(rand(T), rand_partials(C, N))
for G in (:GradNumVec, :GradNumTup)
@eval begin
convert{N,A,B}(::Type{($G){N,A}}, g::($G){N,B}) = ($G){N,A}(value(g), partials(g))
convert{N,T}(::Type{($G){N,T}}, g::($G){N,T}) = g
promote_rule{N,A,B}(::Type{($G){N,A}}, ::Type{($G){N,B}}) = ($G){N,promote_type(A,B)}
promote_rule{N,A,B<:Number}(::Type{($G){N,A}}, ::Type{B}) = ($G){N,promote_type(A,B)}
end
end
convert{T<:Real}(::Type{T}, g::GradientNumber) = isconstant(g) ? convert(T, value(g)) : throw(InexactError())
convert(::Type{GradientNumber}, g::GradientNumber) = g
convert{N,T,C}(::Type{GradientNumber{N,T,C}}, x::Real) = GradientNumber{N,T,C}(x, zero_partials(C, N))
convert(::Type{GradientNumber}, x::Real) = GradientNumber(x)
############################
# Math with GradientNumber #
############################
@inline function gradnum_from_deriv(g::GradientNumber, new_a, deriv)
G = promote_typeof(g, new_a, deriv)
return G(new_a, deriv*partials(g))
end
# Addition/Subtraction #
#----------------------#
+{N}(g1::GradientNumber{N}, g2::GradientNumber{N}) = promote_typeof(g1, g2)(value(g1)+value(g2), partials(g1)+partials(g2))
+(g::GradientNumber, x::Real) = promote_typeof(g, x)(value(g)+x, partials(g))
+(x::Real, g::GradientNumber) = g+x
-(g::GradientNumber) = typeof(g)(-value(g), -partials(g))
-{N}(g1::GradientNumber{N}, g2::GradientNumber{N}) = promote_typeof(g1, g2)(value(g1)-value(g2), partials(g1)-partials(g2))
-(g::GradientNumber, x::Real) = promote_typeof(g, x)(value(g)-x, partials(g))
-(x::Real, g::GradientNumber) = promote_typeof(g, x)(x-value(g), -partials(g))
# Multiplication #
#----------------#
*(g::GradientNumber, x::Bool) = x ? g : (signbit(value(g))==0 ? zero(g) : -zero(g))
*(x::Bool, g::GradientNumber) = g*x
function *{N}(g1::GradientNumber{N}, g2::GradientNumber{N})
a1, a2 = value(g1), value(g2)
return promote_typeof(g1, g2)(a1*a2, _mul_partials(partials(g1), partials(g2), a2, a1))
end
*(g::GradientNumber, x::Real) = promote_typeof(g, x)(value(g)*x, partials(g)*x)
*(x::Real, g::GradientNumber) = g*x
# Division #
#----------#
function /{N}(g1::GradientNumber{N}, g2::GradientNumber{N})
a1, a2 = value(g1), value(g2)
div_a = a1/a2
return promote_typeof(g1, g2, div_a)(div_a, _div_partials(partials(g1), partials(g2), a1, a2))
end
function /(x::Real, g::GradientNumber)
a = value(g)
div_a = x/a
deriv = -(div_a/a)
return gradnum_from_deriv(g, div_a, deriv)
end
function /(g::GradientNumber, x::Real)
div_a = value(g)/x
return promote_typeof(g, div_a)(div_a, partials(g)/x)
end
# Exponentiation #
#----------------#
for f in (:^, :(NaNMath.pow))
@eval begin
@inline function ($f){N}(g1::GradientNumber{N}, g2::GradientNumber{N})
a1, a2 = value(g1), value(g2)
exp_a = ($f)(a1, a2)
powval = a2 * ($f)(a1, a2 - 1)
logval = exp_a * log(a1)
new_bs = _mul_partials(partials(g1), partials(g2), powval, logval)
return promote_typeof(g1, g2, exp_a)(exp_a, new_bs)
end
@inline ($f)(::Base.Irrational{:e}, g::GradientNumber) = exp(g)
end
# generate redundant definitions to resolve ambiguity warnings
for R in (:Integer, :Rational, :Real)
@eval begin
@inline function ($f)(g::GradientNumber, x::$R)
a = value(g)
exp_a = ($f)(a, x)
deriv = x*($f)(a, x - 1)
return gradnum_from_deriv(g, exp_a, deriv)
end
@inline function ($f)(x::$R, g::GradientNumber)
a = value(g)
exp_a = ($f)(x, a)
deriv = exp_a*log(x)
return gradnum_from_deriv(g, exp_a, deriv)
end
end
end
end
# Unary functions on GradientNumbers #
#------------------------------------#
for fsym in auto_defined_unary_funcs
a = :a
new_a = :($(fsym)($a))
deriv = Calculus.differentiate(new_a, a)
@eval begin
@inline function $(fsym)(g::GradientNumber)
a = value(g)
return gradnum_from_deriv(g, $new_a, $deriv)
end
end
# extend corresponding NaNMath methods
if fsym in (:sin, :cos, :tan,
:asin, :acos, :acosh,
:atanh, :log, :log2,
:log10, :lgamma, :log1p)
nan_fsym = Expr(:.,:NaNMath,Base.Meta.quot(fsym))
nan_new_a = :($(nan_fsym)($a))
nan_deriv = to_nanmath(deriv)
@eval begin
@inline function $(nan_fsym)(g::GradientNumber)
a = value(g)
return gradnum_from_deriv(g, $nan_new_a, $nan_deriv)
end
end
end
end
#################
# Special Cases #
#################
# Manually Optimized Functions #
#------------------------------#
@inline function exp(g::GradientNumber)
exp_a = exp(value(g))
return gradnum_from_deriv(g, exp_a, exp_a)
end
@inline function sqrt(g::GradientNumber)
sqrt_a = sqrt(value(g))
deriv = 0.5 / sqrt_a
return gradnum_from_deriv(g, sqrt_a, deriv)
end
# Other Functions #
#-----------------#
@inline calc_atan2(y::GradientNumber, x::GradientNumber) = atan2(value(y), value(x))
@inline calc_atan2(y::Real, x::GradientNumber) = atan2(y, value(x))
@inline calc_atan2(y::GradientNumber, x::Real) = atan2(value(y), x)
for Y in (:Real, :GradientNumber), X in (:Real, :GradientNumber)
if !(Y == :Real && X == :Real)
@eval begin
@inline function atan2(y::$Y, x::$X)
z = y/x
a = value(z)
atan2_a = calc_atan2(y, x)
deriv = inv(one(a) + a*a)
return gradnum_from_deriv(z, atan2_a, deriv)
end
end
end
end