-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathpromotion.jl
239 lines (209 loc) · 8.07 KB
/
promotion.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# This file is a part of Julia. License is MIT: http://julialang.org/license
## type join (closest common ancestor, or least upper bound) ##
typejoin() = Bottom
typejoin(t::ANY) = t
typejoin(t::ANY, ts...) = typejoin(t, typejoin(ts...))
function typejoin(a::ANY, b::ANY)
if isa(a,TypeConstructor); a = a.body; end
if isa(b,TypeConstructor); b = b.body; end
if a <: b
return b
elseif b <: a
return a
end
if isa(a,TypeVar)
return typejoin(a.ub, b)
end
if isa(b,TypeVar)
return typejoin(a, b.ub)
end
if isa(a,Union) || isa(b,Union)
u = Union{a, b}
if !isa(u,Union)
return u
end
return reduce(typejoin, Bottom, u.types)
end
if a <: Tuple
if !(b <: Tuple)
return Any
end
ap, bp = a.parameters, b.parameters
la = length(ap)::Int; lb = length(bp)::Int
if la==0 || lb==0
return Tuple
end
if la < lb
if isvarargtype(ap[la])
c = cell(la)
c[la] = Vararg{typejoin(ap[la].parameters[1], tailjoin(bp,la))}
n = la-1
else
c = cell(la+1)
c[la+1] = Vararg{tailjoin(bp,la+1)}
n = la
end
elseif lb < la
if isvarargtype(bp[lb])
c = cell(lb)
c[lb] = Vararg{typejoin(bp[lb].parameters[1], tailjoin(ap,lb))}
n = lb-1
else
c = cell(lb+1)
c[lb+1] = Vararg{tailjoin(ap,lb+1)}
n = lb
end
else
c = cell(la)
n = la
end
for i = 1:n
ai = ap[i]; bi = bp[i]
ci = typejoin(unwrapva(ai),unwrapva(bi))
c[i] = isvarargtype(ai) || isvarargtype(bi) ? Vararg{ci} : ci
end
return Tuple{c...}
elseif b <: Tuple
return Any
end
while !is(b,Any)
if a <: b.name.primary
while a.name !== b.name
a = super(a)
end
# join on parameters
n = length(a.parameters)
p = cell(n)
for i = 1:n
ai, bi = a.parameters[i], b.parameters[i]
if ai === bi || (isa(ai,Type) && isa(bi,Type) && typeseq(ai,bi))
p[i] = ai
else
p[i] = a.name.primary.parameters[i]
end
end
return a.name.primary{p...}
end
b = super(b)
end
return Any
end
# reduce typejoin over A[i:end]
function tailjoin(A, i)
t = Bottom
for j = i:length(A)
t = typejoin(t, unwrapva(A[j]))
end
return t
end
## promotion mechanism ##
promote_type() = Bottom
promote_type(T) = T
promote_type(T, S, U, V...) = promote_type(T, promote_type(S, U, V...))
promote_type(::Type{Bottom}, ::Type{Bottom}) = Bottom
promote_type{T}(::Type{T}, ::Type{T}) = T
promote_type{T}(::Type{T}, ::Type{Bottom}) = T
promote_type{T}(::Type{Bottom}, ::Type{T}) = T
# Try promote_rule in both orders. Typically only one is defined,
# and there is a fallback returning Bottom below, so the common case is
# promote_type(T, S) =>
# promote_result(T, S, result, Bottom) =>
# typejoin(result, Bottom) => result
promote_type{T,S}(::Type{T}, ::Type{S}) =
promote_result(T, S, promote_rule(T,S), promote_rule(S,T))
promote_rule(T, S) = Bottom
promote_result(t,s,T,S) = promote_type(T,S)
# If no promote_rule is defined, both directions give Bottom. In that
# case use typejoin on the original types instead.
promote_result{T,S}(::Type{T},::Type{S},::Type{Bottom},::Type{Bottom}) = typejoin(T, S)
promote() = ()
promote(x) = (x,)
function promote{T,S}(x::T, y::S)
(convert(promote_type(T,S),x), convert(promote_type(T,S),y))
end
promote_typeof(x) = typeof(x)
promote_typeof(x, xs...) = promote_type(typeof(x), promote_typeof(xs...))
function promote(x, y, z)
(convert(promote_typeof(x,y,z), x),
convert(promote_typeof(x,y,z), y),
convert(promote_typeof(x,y,z), z))
end
function promote(x, y, zs...)
(convert(promote_typeof(x,y,zs...), x),
convert(promote_typeof(x,y,zs...), y),
convert(Tuple{Vararg{promote_typeof(x,y,zs...)}}, zs)...)
end
# TODO: promote{T}(x::T, ys::T...) here to catch all circularities?
## promotions in arithmetic, etc. ##
# Because of the promoting fallback definitions for Number, we need
# a special case for undefined promote_rule on numeric types.
# Otherwise, typejoin(T,S) is called (returning Number) so no conversion
# happens, and +(promote(x,y)...) is called again, causing a stack
# overflow.
promote_result{T<:Number,S<:Number}(::Type{T},::Type{S},::Type{Bottom},::Type{Bottom}) =
promote_to_super(T, S, typejoin(T,S))
# promote numeric types T and S to typejoin(T,S) if T<:S or S<:T
# for example this makes promote_type(Integer,Real) == Real without
# promoting arbitrary pairs of numeric types to Number.
promote_to_super{T<:Number }(::Type{T}, ::Type{T}, ::Type{T}) = T
promote_to_super{T<:Number,S<:Number}(::Type{T}, ::Type{S}, ::Type{T}) = T
promote_to_super{T<:Number,S<:Number}(::Type{T}, ::Type{S}, ::Type{S}) = S
promote_to_super{T<:Number,S<:Number}(::Type{T}, ::Type{S}, ::Type) =
error("no promotion exists for ", T, " and ", S)
+(x::Number, y::Number) = +(promote(x,y)...)
*(x::Number, y::Number) = *(promote(x,y)...)
-(x::Number, y::Number) = -(promote(x,y)...)
/(x::Number, y::Number) = /(promote(x,y)...)
^(x::Number, y::Number) = ^(promote(x,y)...)
fma(x::Number, y::Number, z::Number) = fma(promote(x,y,z)...)
muladd(x::Number, y::Number, z::Number) = muladd(promote(x,y,z)...)
(&)(x::Integer, y::Integer) = (&)(promote(x,y)...)
(|)(x::Integer, y::Integer) = (|)(promote(x,y)...)
($)(x::Integer, y::Integer) = ($)(promote(x,y)...)
==(x::Number, y::Number) = (==)(promote(x,y)...)
< (x::Real, y::Real) = (< )(promote(x,y)...)
<=(x::Real, y::Real) = (<=)(promote(x,y)...)
div(x::Real, y::Real) = div(promote(x,y)...)
fld(x::Real, y::Real) = fld(promote(x,y)...)
cld(x::Real, y::Real) = cld(promote(x,y)...)
rem(x::Real, y::Real) = rem(promote(x,y)...)
mod(x::Real, y::Real) = mod(promote(x,y)...)
mod1(x::Real, y::Real) = mod1(promote(x,y)...)
rem1(x::Real, y::Real) = rem1(promote(x,y)...)
fld1(x::Real, y::Real) = fld1(promote(x,y)...)
max(x::Real, y::Real) = max(promote(x,y)...)
min(x::Real, y::Real) = min(promote(x,y)...)
minmax(x::Real, y::Real) = minmax(promote(x, y)...)
checked_add(x::Integer, y::Integer) = checked_add(promote(x,y)...)
checked_sub(x::Integer, y::Integer) = checked_sub(promote(x,y)...)
checked_mul(x::Integer, y::Integer) = checked_mul(promote(x,y)...)
## catch-alls to prevent infinite recursion when definitions are missing ##
no_op_err(name, T) = error(name," not defined for ",T)
+{T<:Number}(x::T, y::T) = no_op_err("+", T)
*{T<:Number}(x::T, y::T) = no_op_err("*", T)
-{T<:Number}(x::T, y::T) = no_op_err("-", T)
/{T<:Number}(x::T, y::T) = no_op_err("/", T)
^{T<:Number}(x::T, y::T) = no_op_err("^", T)
fma{T<:Number}(x::T, y::T, z::T) = no_op_err("fma", T)
fma(x::Integer, y::Integer, z::Integer) = x*y+z
muladd{T<:Number}(x::T, y::T, z::T) = x*y+z
(&){T<:Integer}(x::T, y::T) = no_op_err("&", T)
(|){T<:Integer}(x::T, y::T) = no_op_err("|", T)
($){T<:Integer}(x::T, y::T) = no_op_err("\$", T)
=={T<:Number}(x::T, y::T) = x === y
<{T<:Real}(x::T, y::T) = no_op_err("<" , T)
<={T<:Real}(x::T, y::T) = no_op_err("<=", T)
div{T<:Real}(x::T, y::T) = no_op_err("div", T)
fld{T<:Real}(x::T, y::T) = no_op_err("fld", T)
cld{T<:Real}(x::T, y::T) = no_op_err("cld", T)
rem{T<:Real}(x::T, y::T) = no_op_err("rem", T)
mod{T<:Real}(x::T, y::T) = no_op_err("mod", T)
mod1{T<:Real}(x::T, y::T) = no_op_err("mod1", T)
rem1{T<:Real}(x::T, y::T) = no_op_err("rem1", T)
fld1{T<:Real}(x::T, y::T) = no_op_err("fld1", T)
max{T<:Real}(x::T, y::T) = ifelse(y < x, x, y)
min{T<:Real}(x::T, y::T) = ifelse(y < x, y, x)
minmax{T<:Real}(x::T, y::T) = y < x ? (y, x) : (x, y)
checked_add{T<:Integer}(x::T, y::T) = no_op_err("checked_add", T)
checked_sub{T<:Integer}(x::T, y::T) = no_op_err("checked_sub", T)
checked_mul{T<:Integer}(x::T, y::T) = no_op_err("checked_mul", T)