-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathgeneration.jl
483 lines (367 loc) · 16.8 KB
/
generation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Uniform random generation
# This file contains the creation of Sampler objects and the associated generation of
# random values from them. More specifically, given the specification S of a set
# of values to pick from (e.g. 1:10, or "a string"), we define
#
# 1) Sampler(rng, S, ::Repetition) -> sampler
# 2) rand(rng, sampler) -> random value
#
# Note that the 1) is automated when the sampler is not intended to carry information,
# i.e. the default fall-backs SamplerType and SamplerTrivial are used.
## from types: rand(::Type, [dims...])
### random floats
Sampler(::Type{RNG}, ::Type{T}, n::Repetition) where {RNG<:AbstractRNG,T<:AbstractFloat} =
Sampler(RNG, CloseOpen01(T), n)
# generic random generation function which can be used by RNG implementors
# it is not defined as a fallback rand method as this could create ambiguities
rand(r::AbstractRNG, ::SamplerTrivial{CloseOpen01{Float16}}) =
Float16(reinterpret(Float32,
(rand(r, UInt10(UInt32)) << 13) | 0x3f800000) - 1)
rand(r::AbstractRNG, ::SamplerTrivial{CloseOpen01{Float32}}) =
reinterpret(Float32, rand(r, UInt23()) | 0x3f800000) - 1
rand(r::AbstractRNG, ::SamplerTrivial{CloseOpen12_64}) =
reinterpret(Float64, 0x3ff0000000000000 | rand(r, UInt52()))
rand(r::AbstractRNG, ::SamplerTrivial{CloseOpen01_64}) = rand(r, CloseOpen12()) - 1.0
#### BigFloat
const bits_in_Limb = sizeof(Limb) << 3
const Limb_high_bit = one(Limb) << (bits_in_Limb-1)
struct SamplerBigFloat{I<:FloatInterval{BigFloat}} <: Sampler{BigFloat}
prec::Int
nlimbs::Int
limbs::Vector{Limb}
shift::UInt
function SamplerBigFloat{I}(prec::Int) where I<:FloatInterval{BigFloat}
nlimbs = (prec-1) ÷ bits_in_Limb + 1
limbs = Vector{Limb}(undef, nlimbs)
shift = nlimbs * bits_in_Limb - prec
new(prec, nlimbs, limbs, shift)
end
end
Sampler(::Type{<:AbstractRNG}, I::FloatInterval{BigFloat}, ::Repetition) =
SamplerBigFloat{typeof(I)}(precision(BigFloat))
function _rand(rng::AbstractRNG, sp::SamplerBigFloat)
z = BigFloat()
limbs = sp.limbs
rand!(rng, limbs)
@inbounds begin
limbs[1] <<= sp.shift
randbool = iszero(limbs[end] & Limb_high_bit)
limbs[end] |= Limb_high_bit
end
z.sign = 1
GC.@preserve limbs unsafe_copyto!(z.d, pointer(limbs), sp.nlimbs)
(z, randbool)
end
function _rand(rng::AbstractRNG, sp::SamplerBigFloat, ::CloseOpen12{BigFloat})
z = _rand(rng, sp)[1]
z.exp = 1
z
end
function _rand(rng::AbstractRNG, sp::SamplerBigFloat, ::CloseOpen01{BigFloat})
z, randbool = _rand(rng, sp)
z.exp = 0
randbool &&
ccall((:mpfr_sub_d, :libmpfr), Int32,
(Ref{BigFloat}, Ref{BigFloat}, Cdouble, Base.MPFR.MPFRRoundingMode),
z, z, 0.5, Base.MPFR.ROUNDING_MODE[])
z
end
# alternative, with 1 bit less of precision
# TODO: make an API for requesting full or not-full precision
function _rand(rng::AbstractRNG, sp::SamplerBigFloat, ::CloseOpen01{BigFloat}, ::Nothing)
z = _rand(rng, sp, CloseOpen12(BigFloat))
ccall((:mpfr_sub_ui, :libmpfr), Int32, (Ref{BigFloat}, Ref{BigFloat}, Culong, Base.MPFR.MPFRRoundingMode),
z, z, 1, Base.MPFR.ROUNDING_MODE[])
z
end
rand(rng::AbstractRNG, sp::SamplerBigFloat{T}) where {T<:FloatInterval{BigFloat}} =
_rand(rng, sp, T())
### random integers
#### UniformBits
rand(r::AbstractRNG, ::SamplerTrivial{UInt10Raw{UInt16}}) = rand(r, UInt16)
rand(r::AbstractRNG, ::SamplerTrivial{UInt23Raw{UInt32}}) = rand(r, UInt32)
rand(r::AbstractRNG, ::SamplerTrivial{UInt52Raw{UInt64}}) =
_rand52(r, rng_native_52(r))
_rand52(r::AbstractRNG, ::Type{Float64}) = reinterpret(UInt64, rand(r, CloseOpen12()))
_rand52(r::AbstractRNG, ::Type{UInt64}) = rand(r, UInt64)
rand(r::AbstractRNG, ::SamplerTrivial{UInt104Raw{UInt128}}) =
rand(r, UInt52Raw(UInt128)) << 52 ⊻ rand(r, UInt52Raw(UInt128))
rand(r::AbstractRNG, ::SamplerTrivial{UInt10{UInt16}}) = rand(r, UInt10Raw()) & 0x03ff
rand(r::AbstractRNG, ::SamplerTrivial{UInt23{UInt32}}) = rand(r, UInt23Raw()) & 0x007fffff
rand(r::AbstractRNG, ::SamplerTrivial{UInt52{UInt64}}) = rand(r, UInt52Raw()) & 0x000fffffffffffff
rand(r::AbstractRNG, ::SamplerTrivial{UInt104{UInt128}}) = rand(r, UInt104Raw()) & 0x000000ffffffffffffffffffffffffff
rand(r::AbstractRNG, sp::SamplerTrivial{<:UniformBits{T}}) where {T} =
rand(r, uint_default(sp[])) % T
#### BitInteger
# rand_generic methods are intended to help RNG implementors with common operations
# we don't call them simply `rand` as this can easily contribute to create
# amibuities with user-side methods (forcing the user to resort to @eval)
rand_generic(r::AbstractRNG, T::Union{Bool,Int8,UInt8,Int16,UInt16,Int32,UInt32}) =
rand(r, UInt52Raw()) % T[]
rand_generic(r::AbstractRNG, ::Type{UInt64}) =
rand(r, UInt52Raw()) << 32 ⊻ rand(r, UInt52Raw())
rand_generic(r::AbstractRNG, ::Type{UInt128}) = _rand128(r, rng_native_52(r))
_rand128(r::AbstractRNG, ::Type{UInt64}) =
((rand(r, UInt64) % UInt128) << 64) ⊻ rand(r, UInt64)
function _rand128(r::AbstractRNG, ::Type{Float64})
xor(rand(r, UInt52Raw(UInt128)) << 96,
rand(r, UInt52Raw(UInt128)) << 48,
rand(r, UInt52Raw(UInt128)))
end
rand_generic(r::AbstractRNG, ::Type{Int128}) = rand(r, UInt128) % Int128
rand_generic(r::AbstractRNG, ::Type{Int64}) = rand(r, UInt64) % Int64
### random complex numbers
rand(r::AbstractRNG, ::SamplerType{Complex{T}}) where {T<:Real} =
complex(rand(r, T), rand(r, T))
### random characters
# returns a random valid Unicode scalar value (i.e. 0 - 0xd7ff, 0xe000 - # 0x10ffff)
function rand(r::AbstractRNG, ::SamplerType{T}) where {T<:AbstractChar}
c = rand(r, 0x00000000:0x0010f7ff)
(c < 0xd800) ? T(c) : T(c+0x800)
end
## Generate random integer within a range
### BitInteger
# there are two implemented samplers for unit ranges, which assume that Float64 (i.e.
# 52 random bits) is the native type for the RNG:
# 1) "Fast", which is the most efficient when the underlying RNG produces rand(Float64)
# "fast enough". The tradeoff is faster creation of the sampler, but more
# consumption of entropy bits
# 2) "Default" which tries to use as few entropy bits as possible, at the cost of a
# a bigger upfront price associated with the creation of the sampler
#### helper functions
uint_sup(::Type{<:Base.BitInteger32}) = UInt32
uint_sup(::Type{<:Union{Int64,UInt64}}) = UInt64
uint_sup(::Type{<:Union{Int128,UInt128}}) = UInt128
#### Fast
struct SamplerRangeFast{U<:BitUnsigned,T<:BitInteger} <: Sampler{T}
a::T # first element of the range
bw::UInt # bit width
m::U # range length - 1
mask::U # mask generated values before threshold rejection
end
SamplerRangeFast(r::AbstractUnitRange{T}) where T<:BitInteger =
SamplerRangeFast(r, uint_sup(T))
function SamplerRangeFast(r::AbstractUnitRange{T}, ::Type{U}) where {T,U}
isempty(r) && throw(ArgumentError("range must be non-empty"))
m = (last(r) - first(r)) % unsigned(T) % U # % unsigned(T) to not propagate sign bit
bw = (sizeof(U) << 3 - leading_zeros(m)) % UInt # bit-width
mask = ((1 % U) << bw) - (1 % U)
SamplerRangeFast{U,T}(first(r), bw, m, mask)
end
function rand(rng::AbstractRNG, sp::SamplerRangeFast{UInt32,T}) where T
a, bw, m, mask = sp.a, sp.bw, sp.m, sp.mask
# below, we don't use UInt32, to get reproducible values, whether Int is Int64 or Int32
x = rand(rng, LessThan(m, Masked(mask, UInt52Raw(UInt32))))
(x + a % UInt32) % T
end
function rand(rng::AbstractRNG, sp::SamplerRangeFast{UInt64,T}) where T
a, bw, m, mask = sp.a, sp.bw, sp.m, sp.mask
x = bw <= 52 ? rand(rng, LessThan(m, Masked(mask, UInt52Raw()))) :
rand(rng, LessThan(m, Masked(mask, uniform(UInt64))))
(x + a % UInt64) % T
end
function rand(rng::AbstractRNG, sp::SamplerRangeFast{UInt128,T}) where T
a, bw, m, mask = sp.a, sp.bw, sp.m, sp.mask
x = bw <= 52 ?
rand(rng, LessThan(m % UInt64, Masked(mask % UInt64, UInt52Raw()))) % UInt128 :
bw <= 104 ?
rand(rng, LessThan(m, Masked(mask, UInt104Raw()))) :
rand(rng, LessThan(m, Masked(mask, uniform(UInt128))))
x % T + a
end
#### Default
# remainder function according to Knuth, where rem_knuth(a, 0) = a
rem_knuth(a::UInt, b::UInt) = a % (b + (b == 0)) + a * (b == 0)
rem_knuth(a::T, b::T) where {T<:Unsigned} = b != 0 ? a % b : a
# maximum multiple of k <= sup decremented by one,
# that is 0xFFFF...FFFF if k = (typemax(T) - typemin(T)) + 1 and sup == typemax(T) - 1
# with intentional underflow
# see http://stackoverflow.com/questions/29182036/integer-arithmetic-add-1-to-uint-max-and-divide-by-n-without-overflow
# sup == 0 means typemax(T) + 1
maxmultiple(k::T, sup::T=zero(T)) where {T<:Unsigned} =
(div(sup - k, k + (k == 0))*k + k - one(k))::T
# similar but sup must not be equal to typemax(T)
unsafe_maxmultiple(k::T, sup::T) where {T<:Unsigned} =
div(sup, k + (k == 0))*k - one(k)
struct SamplerRangeInt{T<:Integer,U<:Unsigned} <: Sampler{T}
a::T # first element of the range
bw::Int # bit width
k::U # range length or zero for full range
u::U # rejection threshold
end
SamplerRangeInt(r::AbstractUnitRange{T}) where T<:BitInteger =
SamplerRangeInt(r, uint_sup(T))
function SamplerRangeInt(r::AbstractUnitRange{T}, ::Type{U}) where {T,U}
isempty(r) && throw(ArgumentError("range must be non-empty"))
a = first(r)
m = (last(r) - first(r)) % unsigned(T) % U
k = m + one(U)
bw = (sizeof(U) << 3 - leading_zeros(m)) % Int
mult = if U === UInt32
maxmultiple(k)
elseif U === UInt64
bw <= 52 ? unsafe_maxmultiple(k, one(UInt64) << 52) :
maxmultiple(k)
else # U === UInt128
bw <= 52 ? unsafe_maxmultiple(k, one(UInt128) << 52) :
bw <= 104 ? unsafe_maxmultiple(k, one(UInt128) << 104) :
maxmultiple(k)
end
SamplerRangeInt{T,U}(a, bw, k, mult) # overflow ok
end
Sampler(::Type{<:AbstractRNG}, r::AbstractUnitRange{T},
::Repetition) where {T<:BitInteger} = SamplerRangeInt(r)
rand(rng::AbstractRNG, sp::SamplerRangeInt{T,UInt32}) where {T<:BitInteger} =
(unsigned(sp.a) + rem_knuth(rand(rng, LessThan(sp.u, UInt52Raw(UInt32))), sp.k)) % T
# this function uses 52 bit entropy for small ranges of length <= 2^52
function rand(rng::AbstractRNG, sp::SamplerRangeInt{T,UInt64}) where T<:BitInteger
x = sp.bw <= 52 ? rand(rng, LessThan(sp.u, UInt52())) :
rand(rng, LessThan(sp.u, uniform(UInt64)))
return ((sp.a % UInt64) + rem_knuth(x, sp.k)) % T
end
function rand(rng::AbstractRNG, sp::SamplerRangeInt{T,UInt128}) where T<:BitInteger
x = sp.bw <= 52 ? rand(rng, LessThan(sp.u, UInt52(UInt128))) :
sp.bw <= 104 ? rand(rng, LessThan(sp.u, UInt104(UInt128))) :
rand(rng, LessThan(sp.u, uniform(UInt128)))
return ((sp.a % UInt128) + rem_knuth(x, sp.k)) % T
end
### BigInt
struct SamplerBigInt <: Sampler{BigInt}
a::BigInt # first
m::BigInt # range length - 1
nlimbs::Int # number of limbs in generated BigInt's (z ∈ [0, m])
nlimbsmax::Int # max number of limbs for z+a
mask::Limb # applied to the highest limb
end
function Sampler(::Type{<:AbstractRNG}, r::AbstractUnitRange{BigInt}, ::Repetition)
m = last(r) - first(r)
m < 0 && throw(ArgumentError("range must be non-empty"))
nd = ndigits(m, base=2)
nlimbs, highbits = divrem(nd, 8*sizeof(Limb))
highbits > 0 && (nlimbs += 1)
mask = highbits == 0 ? ~zero(Limb) : one(Limb)<<highbits - one(Limb)
nlimbsmax = max(nlimbs, abs(last(r).size), abs(first(r).size))
return SamplerBigInt(first(r), m, nlimbs, nlimbsmax, mask)
end
function rand(rng::AbstractRNG, sp::SamplerBigInt)
x = MPZ.realloc2(sp.nlimbsmax*8*sizeof(Limb))
GC.@preserve x begin
limbs = UnsafeView(x.d, sp.nlimbs)
while true
rand!(rng, limbs)
limbs[end] &= sp.mask
MPZ.mpn_cmp(x, sp.m, sp.nlimbs) <= 0 && break
end
# adjust x.size (normally done by mpz_limbs_finish, in GMP version >= 6)
x.size = sp.nlimbs
while x.size > 0
limbs[x.size] != 0 && break
x.size -= 1
end
end
MPZ.add!(x, sp.a)
end
## random values from AbstractArray
Sampler(::Type{RNG}, r::AbstractArray, n::Repetition) where {RNG<:AbstractRNG} =
SamplerSimple(r, Sampler(RNG, firstindex(r):lastindex(r), n))
rand(rng::AbstractRNG, sp::SamplerSimple{<:AbstractArray,<:Sampler}) =
@inbounds return sp[][rand(rng, sp.data)]
## random values from Dict
function Sampler(::Type{RNG}, t::Dict, ::Repetition) where RNG<:AbstractRNG
isempty(t) && throw(ArgumentError("collection must be non-empty"))
# we use Val(Inf) below as rand is called repeatedly internally
# even for generating only one random value from t
SamplerSimple(t, Sampler(RNG, LinearIndices(t.slots), Val(Inf)))
end
function rand(rng::AbstractRNG, sp::SamplerSimple{<:Dict,<:Sampler})
while true
i = rand(rng, sp.data)
Base.isslotfilled(sp[], i) && @inbounds return (sp[].keys[i] => sp[].vals[i])
end
end
## random values from Set
Sampler(::Type{RNG}, t::Set{T}, n::Repetition) where {RNG<:AbstractRNG,T} =
SamplerTag{Set{T}}(Sampler(RNG, t.dict, n))
rand(rng::AbstractRNG, sp::SamplerTag{<:Set,<:Sampler}) = rand(rng, sp.data).first
## random values from BitSet
function Sampler(RNG::Type{<:AbstractRNG}, t::BitSet, n::Repetition)
isempty(t) && throw(ArgumentError("collection must be non-empty"))
SamplerSimple(t, Sampler(RNG, minimum(t):maximum(t), Val(Inf)))
end
function rand(rng::AbstractRNG, sp::SamplerSimple{BitSet,<:Sampler})
while true
n = rand(rng, sp.data)
n in sp[] && return n
end
end
## random values from AbstractDict/AbstractSet
# we defer to _Sampler to avoid ambiguities with a call like Sampler(rng, Set(1), Val(1))
Sampler(RNG::Type{<:AbstractRNG}, t::Union{AbstractDict,AbstractSet}, n::Repetition) =
_Sampler(RNG, t, n)
# avoid linear complexity for repeated calls
_Sampler(RNG::Type{<:AbstractRNG}, t::Union{AbstractDict,AbstractSet}, n::Val{Inf}) =
Sampler(RNG, collect(t), n)
# when generating only one element, avoid the call to collect
_Sampler(::Type{<:AbstractRNG}, t::Union{AbstractDict,AbstractSet}, ::Val{1}) =
SamplerTrivial(t)
function nth(iter, n::Integer)::eltype(iter)
for (i, x) in enumerate(iter)
i == n && return x
end
end
rand(rng::AbstractRNG, sp::SamplerTrivial{<:Union{AbstractDict,AbstractSet}}) =
nth(sp[], rand(rng, 1:length(sp[])))
## random characters from a string
# we use collect(str), which is most of the time more efficient than specialized methods
# (except maybe for very small arrays)
Sampler(RNG::Type{<:AbstractRNG}, str::AbstractString, n::Val{Inf}) = Sampler(RNG, collect(str), n)
# when generating only one char from a string, the specialized method below
# is usually more efficient
Sampler(RNG::Type{<:AbstractRNG}, str::AbstractString, ::Val{1}) =
SamplerSimple(str, Sampler(RNG, 1:_lastindex(str), Val(Inf)))
isvalid_unsafe(s::String, i) = !Base.is_valid_continuation(GC.@preserve s unsafe_load(pointer(s), i))
isvalid_unsafe(s::AbstractString, i) = isvalid(s, i)
_lastindex(s::String) = sizeof(s)
_lastindex(s::AbstractString) = lastindex(s)
function rand(rng::AbstractRNG, sp::SamplerSimple{<:AbstractString,<:Sampler})::Char
str = sp[]
while true
pos = rand(rng, sp.data)
isvalid_unsafe(str, pos) && return str[pos]
end
end
## random elements from tuples
### 1
Sampler(::Type{<:AbstractRNG}, t::Tuple{A}, ::Repetition) where {A} =
SamplerTrivial(t)
rand(rng::AbstractRNG, sp::SamplerTrivial{Tuple{A}}) where {A} =
@inbounds return sp[][1]
### 2
Sampler(RNG::Type{<:AbstractRNG}, t::Tuple{A,B}, n::Repetition) where {A,B} =
SamplerSimple(t, Sampler(RNG, Bool, n))
rand(rng::AbstractRNG, sp::SamplerSimple{Tuple{A,B}}) where {A,B} =
@inbounds return sp[][1 + rand(rng, sp.data)]
### 3
Sampler(RNG::Type{<:AbstractRNG}, t::Tuple{A,B,C}, n::Repetition) where {A,B,C} =
SamplerSimple(t, Sampler(RNG, UInt52(), n))
function rand(rng::AbstractRNG, sp::SamplerSimple{Tuple{A,B,C}}) where {A,B,C}
local r
while true
r = rand(rng, sp.data)
r != 0x000fffffffffffff && break # _very_ likely
end
@inbounds return sp[][1 + r ÷ 0x0005555555555555]
end
### 4
Sampler(RNG::Type{<:AbstractRNG}, t::Tuple{A,B,C,D}, n::Repetition) where {A,B,C,D} =
SamplerSimple(t, Sampler(RNG, UInt52Raw(Int), n))
function rand(rng::AbstractRNG, sp::SamplerSimple{Tuple{A,B,C,D}}) where {A,B,C,D}
r = rand(rng, sp.data) & 3
@inbounds return sp[][1 + r]
end
### n
Sampler(RNG::Type{<:AbstractRNG}, t::Tuple, n::Repetition) =
SamplerSimple(t, Sampler(RNG, Base.OneTo(length(t)), n))
rand(rng::AbstractRNG, sp::SamplerSimple{<:Tuple}) =
@inbounds return sp[][rand(rng, sp.data)]