-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathdatatype.c
927 lines (869 loc) · 32.6 KB
/
datatype.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
// This file is a part of Julia. License is MIT: https://julialang.org/license
/*
defining DataTypes
basic operations on struct and bits values
*/
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include "julia.h"
#include "julia_internal.h"
#include "julia_assert.h"
#ifdef __cplusplus
extern "C" {
#endif
// allocating TypeNames -----------------------------------------------------------
jl_sym_t *jl_demangle_typename(jl_sym_t *s)
{
char *n = jl_symbol_name(s);
if (n[0] != '#')
return s;
char *end = strrchr(n, '#');
int32_t len;
if (end == n || end == n+1)
len = strlen(n) - 1;
else
len = (end-n) - 1;
return jl_symbol_n(&n[1], len);
}
JL_DLLEXPORT jl_methtable_t *jl_new_method_table(jl_sym_t *name, jl_module_t *module)
{
jl_ptls_t ptls = jl_get_ptls_states();
jl_methtable_t *mt =
(jl_methtable_t*)jl_gc_alloc(ptls, sizeof(jl_methtable_t),
jl_methtable_type);
mt->name = jl_demangle_typename(name);
mt->module = module;
mt->defs.unknown = jl_nothing;
mt->cache.unknown = jl_nothing;
mt->max_args = 0;
mt->kwsorter = NULL;
mt->backedges = NULL;
JL_MUTEX_INIT(&mt->writelock);
return mt;
}
JL_DLLEXPORT jl_typename_t *jl_new_typename_in(jl_sym_t *name, jl_module_t *module)
{
jl_ptls_t ptls = jl_get_ptls_states();
jl_typename_t *tn =
(jl_typename_t*)jl_gc_alloc(ptls, sizeof(jl_typename_t),
jl_typename_type);
tn->name = name;
tn->module = module;
tn->wrapper = NULL;
tn->cache = jl_emptysvec;
tn->linearcache = jl_emptysvec;
tn->names = NULL;
tn->hash = bitmix(bitmix(module ? module->build_id : 0, name->hash), 0xa1ada1da);
tn->mt = NULL;
return tn;
}
// allocating DataTypes -----------------------------------------------------------
jl_datatype_t *jl_new_abstracttype(jl_value_t *name, jl_module_t *module, jl_datatype_t *super, jl_svec_t *parameters)
{
return jl_new_datatype((jl_sym_t*)name, module, super, parameters, jl_emptysvec, jl_emptysvec, 1, 0, 0);
}
jl_datatype_t *jl_new_uninitialized_datatype(void)
{
jl_ptls_t ptls = jl_get_ptls_states();
jl_datatype_t *t = (jl_datatype_t*)jl_gc_alloc(ptls, sizeof(jl_datatype_t), jl_datatype_type);
t->hasfreetypevars = 0;
t->isdispatchtuple = 0;
t->isbitstype = 0;
t->zeroinit = 0;
t->isinlinealloc = 0;
t->layout = NULL;
t->names = NULL;
return t;
}
static jl_datatype_layout_t *jl_get_layout(uint32_t nfields,
uint32_t alignment,
int haspadding,
jl_fielddesc32_t desc[])
{
// compute the smallest fielddesc type that can hold the layout description
int fielddesc_type = 0;
uint32_t npointers = 0;
// First pointer field
uint32_t first_ptr = (uint32_t)-1;
// Last pointer field
uint32_t last_ptr = 0;
if (nfields > 0) {
uint32_t max_size = 0;
uint32_t max_offset = desc[nfields - 1].offset;
for (size_t i = 0; i < nfields; i++) {
if (desc[i].size > max_size)
max_size = desc[i].size;
if (desc[i].isptr) {
npointers++;
if (first_ptr == (uint32_t)-1)
first_ptr = i;
last_ptr = i;
}
}
jl_fielddesc8_t maxdesc8 = { 0, max_size, max_offset };
jl_fielddesc16_t maxdesc16 = { 0, max_size, max_offset };
jl_fielddesc32_t maxdesc32 = { 0, max_size, max_offset };
if (maxdesc8.size != max_size || maxdesc8.offset != max_offset) {
fielddesc_type = 1;
if (maxdesc16.size != max_size || maxdesc16.offset != max_offset) {
fielddesc_type = 2;
if (maxdesc32.size != max_size || maxdesc32.offset != max_offset) {
assert(0); // should have been verified by caller
}
}
}
}
// allocate a new descriptor
uint32_t fielddesc_size = jl_fielddesc_size(fielddesc_type);
int has_padding = nfields && npointers;
jl_datatype_layout_t *flddesc =
(jl_datatype_layout_t*)jl_gc_perm_alloc(sizeof(jl_datatype_layout_t) +
nfields * fielddesc_size +
(has_padding ? sizeof(uint32_t) : 0), 0, 4, 0);
if (has_padding) {
if (first_ptr > UINT16_MAX)
first_ptr = UINT16_MAX;
last_ptr = nfields - last_ptr - 1;
if (last_ptr > UINT16_MAX)
last_ptr = UINT16_MAX;
flddesc = (jl_datatype_layout_t*)(((char*)flddesc) + sizeof(uint32_t));
jl_datatype_layout_n_nonptr(flddesc) = (first_ptr << 16) | last_ptr;
}
flddesc->nfields = nfields;
flddesc->alignment = alignment;
flddesc->haspadding = haspadding;
flddesc->fielddesc_type = fielddesc_type;
// fill out the fields of the new descriptor
jl_fielddesc8_t* desc8 = (jl_fielddesc8_t*)jl_dt_layout_fields(flddesc);
jl_fielddesc16_t* desc16 = (jl_fielddesc16_t*)jl_dt_layout_fields(flddesc);
jl_fielddesc32_t* desc32 = (jl_fielddesc32_t*)jl_dt_layout_fields(flddesc);
for (size_t i = 0; i < nfields; i++) {
if (fielddesc_type == 0) {
desc8[i].offset = desc[i].offset;
desc8[i].size = desc[i].size;
desc8[i].isptr = desc[i].isptr;
}
else if (fielddesc_type == 1) {
desc16[i].offset = desc[i].offset;
desc16[i].size = desc[i].size;
desc16[i].isptr = desc[i].isptr;
}
else {
desc32[i].offset = desc[i].offset;
desc32[i].size = desc[i].size;
desc32[i].isptr = desc[i].isptr;
}
}
uint32_t nexp = 0;
while (npointers >= 0x10000) {
nexp++;
npointers = npointers >> 1;
}
flddesc->npointers = npointers | (nexp << 16);
return flddesc;
}
// Determine if homogeneous tuple with fields of type t will have
// a special alignment beyond normal Julia rules.
// Return special alignment if one exists, 0 if normal alignment rules hold.
// A non-zero result *must* match the LLVM rules for a vector type <nfields x t>.
// For sake of Ahead-Of-Time (AOT) compilation, this routine has to work
// without LLVM being available.
unsigned jl_special_vector_alignment(size_t nfields, jl_value_t *t)
{
if (!jl_is_vecelement_type(t))
return 0;
// LLVM 3.7 and 3.8 either crash or generate wrong code for many
// SIMD vector sizes N. It seems the rule is that N can have at
// most 2 non-zero bits. (This is true at least for N<=100.) See
// also <https://llvm.org/bugs/show_bug.cgi?id=27708>.
size_t mask = nfields;
// See e.g.
// <https://graphics.stanford.edu/%7Eseander/bithacks.html> for an
// explanation of this bit-counting algorithm.
mask &= mask-1; // clear least-significant 1 if present
mask &= mask-1; // clear another 1
if (mask)
return 0; // nfields has more than two 1s
assert(jl_datatype_nfields(t)==1);
jl_value_t *ty = jl_field_type(t, 0);
if (!jl_is_primitivetype(ty))
// LLVM requires that a vector element be a primitive type.
// LLVM allows pointer types as vector elements, but until a
// motivating use case comes up for Julia, we reject pointers.
return 0;
size_t elsz = jl_datatype_size(ty);
if (elsz>8 || (1<<elsz & 0x116) == 0)
// Element size is not 1, 2, 4, or 8.
return 0;
size_t size = nfields*elsz;
// LLVM's alignment rule for vectors seems to be to round up to
// a power of two, even if that's overkill for the target hardware.
size_t alignment=1;
for( ; size>alignment; alignment*=2 )
continue;
return alignment;
}
STATIC_INLINE int jl_is_datatype_make_singleton(jl_datatype_t *d)
{
return (!d->abstract && jl_datatype_size(d) == 0 && d != jl_sym_type && d->name != jl_array_typename &&
d->uid != 0 && !d->mutabl);
}
STATIC_INLINE void jl_allocate_singleton_instance(jl_datatype_t *st)
{
if (jl_is_datatype_make_singleton(st)) {
st->instance = jl_gc_alloc(jl_get_ptls_states(), 0, st);
jl_gc_wb(st, st->instance);
}
}
static unsigned union_isbits(jl_value_t *ty, size_t *nbytes, size_t *align)
{
if (jl_is_uniontype(ty)) {
unsigned na = union_isbits(((jl_uniontype_t*)ty)->a, nbytes, align);
if (na == 0)
return 0;
unsigned nb = union_isbits(((jl_uniontype_t*)ty)->b, nbytes, align);
if (nb == 0)
return 0;
return na + nb;
}
if (jl_isbits(ty)) {
size_t sz = jl_datatype_size(ty);
size_t al = jl_datatype_align(ty);
if (*nbytes < sz)
*nbytes = sz;
if (*align < al)
*align = al;
return 1;
}
return 0;
}
JL_DLLEXPORT int jl_islayout_inline(jl_value_t *eltype, size_t *fsz, size_t *al)
{
unsigned countbits = union_isbits(eltype, fsz, al);
return countbits > 0 && countbits < 127;
}
static int references_name(jl_value_t *p, jl_typename_t *name)
{
if (jl_is_uniontype(p))
return references_name(((jl_uniontype_t*)p)->a, name) ||
references_name(((jl_uniontype_t*)p)->b, name);
if (jl_is_unionall(p))
return references_name((jl_value_t*)((jl_unionall_t*)p)->var, name) ||
references_name(((jl_unionall_t*)p)->body, name);
if (jl_is_typevar(p))
return references_name(((jl_tvar_t*)p)->ub, name) ||
references_name(((jl_tvar_t*)p)->lb, name);
if (jl_is_datatype(p)) {
if (((jl_datatype_t*)p)->name == name)
return 1;
size_t i, l = jl_nparams(p);
for (i = 0; i < l; i++) {
if (references_name(jl_tparam(p, i), name))
return 1;
}
}
return 0;
}
void jl_compute_field_offsets(jl_datatype_t *st)
{
size_t sz = 0, alignm = 1;
int homogeneous = 1;
jl_value_t *lastty = NULL;
uint64_t max_offset = (((uint64_t)1) << 32) - 1;
uint64_t max_size = max_offset >> 1;
if (st->name->wrapper) {
jl_datatype_t *w = (jl_datatype_t*)jl_unwrap_unionall(st->name->wrapper);
// compute whether this type can be inlined
// based on whether its definition is self-referential
if (w->types != NULL) {
st->isbitstype = st->isconcretetype && !st->mutabl;
size_t i, nf = jl_field_count(st);
for (i = 0; i < nf; i++) {
jl_value_t *fld = jl_field_type(st, i);
if (st->isbitstype)
st->isbitstype = jl_is_datatype(fld) && ((jl_datatype_t*)fld)->isbitstype;
if (!st->zeroinit)
st->zeroinit = (jl_is_datatype(fld) && ((jl_datatype_t*)fld)->isinlinealloc) ? ((jl_datatype_t*)fld)->zeroinit : 1;
}
if (st->isbitstype) {
st->isinlinealloc = 1;
size_t i, nf = jl_field_count(w);
for (i = 0; i < nf; i++) {
jl_value_t *fld = jl_field_type(w, i);
if (references_name(fld, w->name)) {
st->isinlinealloc = 0;
st->isbitstype = 0;
st->zeroinit = 1;
break;
}
}
}
}
// If layout doesn't depend on type parameters, it's stored in st->name->wrapper
// and reused by all subtypes.
if (st != w && // this check allows us to re-compute layout for some types during init
w->layout) {
st->layout = w->layout;
st->size = w->size;
jl_allocate_singleton_instance(st);
return;
}
}
if (st->types == NULL || (jl_is_namedtuple_type(st) && !jl_is_concrete_type((jl_value_t*)st)))
return;
uint32_t nfields = jl_svec_len(st->types);
if (nfields == 0) {
if (st == jl_sym_type || st == jl_string_type) {
// opaque layout - heap-allocated blob
static const jl_datatype_layout_t opaque_byte_layout = {0, 1, 0, 1, 0};
st->layout = &opaque_byte_layout;
}
else if (st == jl_simplevector_type || st->name == jl_array_typename) {
static const jl_datatype_layout_t opaque_ptr_layout = {0, sizeof(void*), 0, 1, 0};
st->layout = &opaque_ptr_layout;
}
else {
// reuse the same layout for all singletons
static const jl_datatype_layout_t singleton_layout = {0, 1, 0, 0, 0};
st->layout = &singleton_layout;
jl_allocate_singleton_instance(st);
}
return;
}
if (!jl_is_concrete_type((jl_value_t*)st)) {
// compute layout whenever field types have no free variables
for (size_t i = 0; i < nfields; i++) {
if (jl_has_free_typevars(jl_field_type(st, i)))
return;
}
}
size_t descsz = nfields * sizeof(jl_fielddesc32_t);
jl_fielddesc32_t *desc;
if (descsz < jl_page_size)
desc = (jl_fielddesc32_t*)alloca(descsz);
else
desc = (jl_fielddesc32_t*)malloc(descsz);
int haspadding = 0;
assert(st->name == jl_tuple_typename ||
st == jl_sym_type ||
st == jl_simplevector_type ||
nfields != 0);
for (size_t i = 0; i < nfields; i++) {
jl_value_t *ty = jl_field_type(st, i);
size_t fsz = 0, al = 0;
if (jl_islayout_inline(ty, &fsz, &al)) {
if (__unlikely(fsz > max_size))
// Should never happen
goto throw_ovf;
desc[i].isptr = 0;
if (jl_is_uniontype(ty)) {
haspadding = 1;
fsz += 1; // selector byte
}
else { // isbits struct
if (((jl_datatype_t*)ty)->layout->haspadding)
haspadding = 1;
}
}
else {
fsz = sizeof(void*);
if (fsz > MAX_ALIGN)
fsz = MAX_ALIGN;
al = fsz;
desc[i].isptr = 1;
}
assert(al <= JL_HEAP_ALIGNMENT && (JL_HEAP_ALIGNMENT % al) == 0);
if (al != 0) {
size_t alsz = LLT_ALIGN(sz, al);
if (sz & (al - 1))
haspadding = 1;
sz = alsz;
if (al > alignm)
alignm = al;
}
homogeneous &= lastty==NULL || lastty==ty;
lastty = ty;
desc[i].offset = sz;
desc[i].size = fsz;
if (__unlikely(max_offset - sz < fsz))
goto throw_ovf;
sz += fsz;
}
if (homogeneous && lastty != NULL && jl_is_tuple_type(st)) {
// Some tuples become LLVM vectors with stronger alignment than what was calculated above.
unsigned al = jl_special_vector_alignment(nfields, lastty);
assert(al % alignm == 0);
// JL_HEAP_ALIGNMENT is the biggest alignment we can guarantee on the heap.
if (al > JL_HEAP_ALIGNMENT)
alignm = JL_HEAP_ALIGNMENT;
else if (al)
alignm = al;
}
st->size = LLT_ALIGN(sz, alignm);
if (st->size > sz)
haspadding = 1;
st->layout = jl_get_layout(nfields, alignm, haspadding, desc);
if (descsz >= jl_page_size) free(desc);
jl_allocate_singleton_instance(st);
return;
throw_ovf:
if (descsz >= jl_page_size) free(desc);
jl_errorf("type %s has field offset %d that exceeds the page size", jl_symbol_name(st->name->name), descsz);
}
JL_DLLEXPORT jl_datatype_t *jl_new_datatype(
jl_sym_t *name,
jl_module_t *module,
jl_datatype_t *super,
jl_svec_t *parameters,
jl_svec_t *fnames,
jl_svec_t *ftypes,
int abstract, int mutabl,
int ninitialized)
{
jl_datatype_t *t = NULL;
jl_typename_t *tn = NULL;
JL_GC_PUSH2(&t, &tn);
if (t == NULL)
t = jl_new_uninitialized_datatype();
else
tn = t->name;
// init before possibly calling jl_new_typename_in
t->super = super;
if (super != NULL) jl_gc_wb(t, t->super);
t->parameters = parameters;
jl_gc_wb(t, t->parameters);
t->types = ftypes;
if (ftypes != NULL) jl_gc_wb(t, t->types);
t->abstract = abstract;
t->mutabl = mutabl;
t->ninitialized = ninitialized;
t->instance = NULL;
t->struct_decl = NULL;
t->ditype = NULL;
t->size = 0;
if (tn == NULL) {
t->name = NULL;
if (jl_is_typename(name)) {
tn = (jl_typename_t*)name;
}
else {
tn = jl_new_typename_in((jl_sym_t*)name, module);
if (!abstract) {
tn->mt = jl_new_method_table(name, module);
jl_gc_wb(tn, tn->mt);
}
}
t->name = tn;
jl_gc_wb(t, t->name);
}
t->name->names = fnames;
jl_gc_wb(t->name, t->name->names);
if (t->name->wrapper == NULL) {
t->name->wrapper = (jl_value_t*)t;
jl_gc_wb(t->name, t);
int i;
int np = jl_svec_len(parameters);
for (i=np-1; i >= 0; i--) {
t->name->wrapper = jl_new_struct(jl_unionall_type, jl_svecref(parameters,i), t->name->wrapper);
jl_gc_wb(t->name, t->name->wrapper);
}
}
jl_precompute_memoized_dt(t);
t->uid = 0;
if (!abstract) {
if (jl_svec_len(parameters) == 0)
t->uid = jl_assign_type_uid();
jl_compute_field_offsets(t);
}
JL_GC_POP();
return t;
}
JL_DLLEXPORT jl_datatype_t *jl_new_primitivetype(jl_value_t *name, jl_module_t *module,
jl_datatype_t *super,
jl_svec_t *parameters, size_t nbits)
{
jl_datatype_t *bt = jl_new_datatype((jl_sym_t*)name, module, super, parameters,
jl_emptysvec, jl_emptysvec, 0, 0, 0);
uint32_t nbytes = (nbits + 7) / 8;
uint32_t alignm = next_power_of_two(nbytes);
if (alignm > MAX_ALIGN)
alignm = MAX_ALIGN;
bt->isbitstype = bt->isinlinealloc = (parameters == jl_emptysvec);
bt->size = nbytes;
bt->layout = jl_get_layout(0, alignm, 0, NULL);
bt->instance = NULL;
return bt;
}
// bits constructors ----------------------------------------------------------
JL_DLLEXPORT jl_value_t *jl_new_bits(jl_value_t *dt, void *data)
{
// data may not have the alignment required by the size
// but will always have the alignment required by the datatype
jl_ptls_t ptls = jl_get_ptls_states();
assert(jl_is_datatype(dt));
jl_datatype_t *bt = (jl_datatype_t*)dt;
size_t nb = jl_datatype_size(bt);
// some types have special pools to minimize allocations
if (nb == 0) return jl_new_struct_uninit(bt); // returns bt->instance
if (bt == jl_bool_type) return (1 & *(int8_t*)data) ? jl_true : jl_false;
if (bt == jl_uint8_type) return jl_box_uint8(*(uint8_t*)data);
if (bt == jl_int64_type) return jl_box_int64(*(int64_t*)data);
if (bt == jl_int32_type) return jl_box_int32(*(int32_t*)data);
if (bt == jl_int8_type) return jl_box_int8(*(int8_t*)data);
if (bt == jl_int16_type) return jl_box_int16(*(int16_t*)data);
if (bt == jl_uint64_type) return jl_box_uint64(*(uint64_t*)data);
if (bt == jl_uint32_type) return jl_box_uint32(*(uint32_t*)data);
if (bt == jl_uint16_type) return jl_box_uint16(*(uint16_t*)data);
if (bt == jl_char_type) return jl_box_char(*(uint32_t*)data);
jl_value_t *v = jl_gc_alloc(ptls, nb, bt);
switch (nb) {
case 1: *(uint8_t*) v = *(uint8_t*)data; break;
case 2: *(uint16_t*)v = jl_load_unaligned_i16(data); break;
case 4: *(uint32_t*)v = jl_load_unaligned_i32(data); break;
case 8: *(uint64_t*)v = jl_load_unaligned_i64(data); break;
case 16:
memcpy(jl_assume_aligned(v, 16), data, 16);
break;
default: memcpy(v, data, nb);
}
return v;
}
// used by boot.jl
JL_DLLEXPORT jl_value_t *jl_typemax_uint(jl_value_t *bt)
{
uint64_t data = 0xffffffffffffffffULL;
jl_value_t *v = jl_gc_alloc(jl_get_ptls_states(), sizeof(size_t), bt);
memcpy(v, &data, sizeof(size_t));
return v;
}
void jl_assign_bits(void *dest, jl_value_t *bits)
{
// bits must be a heap box.
size_t nb = jl_datatype_size(jl_typeof(bits));
if (nb == 0) return;
switch (nb) {
case 1: *(uint8_t*)dest = *(uint8_t*)bits; break;
case 2: jl_store_unaligned_i16(dest, *(uint16_t*)bits); break;
case 4: jl_store_unaligned_i32(dest, *(uint32_t*)bits); break;
case 8: jl_store_unaligned_i64(dest, *(uint64_t*)bits); break;
case 16:
memcpy(dest, jl_assume_aligned(bits, 16), 16);
break;
default: memcpy(dest, bits, nb);
}
}
#define BOXN_FUNC(nb,nw) \
JL_DLLEXPORT jl_value_t *jl_box##nb(jl_datatype_t *t, int##nb##_t x) \
{ \
jl_ptls_t ptls = jl_get_ptls_states(); \
assert(jl_isbits(t)); \
assert(jl_datatype_size(t) == sizeof(x)); \
jl_value_t *v = jl_gc_alloc(ptls, nw * sizeof(void*), t); \
*(int##nb##_t*)jl_data_ptr(v) = x; \
return v; \
} \
jl_value_t *jl_permbox##nb(jl_datatype_t *t, int##nb##_t x) \
{ \
assert(jl_isbits(t)); \
assert(jl_datatype_size(t) == sizeof(x)); \
jl_value_t *v = jl_gc_permobj(nw * sizeof(void*), t); \
*(int##nb##_t*)jl_data_ptr(v) = x; \
return v; \
}
BOXN_FUNC(8, 1)
BOXN_FUNC(16, 1)
BOXN_FUNC(32, 1)
#ifdef _P64
BOXN_FUNC(64, 1)
#else
BOXN_FUNC(64, 2)
#endif
#define UNBOX_FUNC(j_type,c_type) \
JL_DLLEXPORT c_type jl_unbox_##j_type(jl_value_t *v) \
{ \
assert(jl_is_primitivetype(jl_typeof(v))); \
assert(jl_datatype_size(jl_typeof(v)) == sizeof(c_type)); \
return *(c_type*)jl_data_ptr(v); \
}
UNBOX_FUNC(int8, int8_t)
UNBOX_FUNC(uint8, uint8_t)
UNBOX_FUNC(int16, int16_t)
UNBOX_FUNC(uint16, uint16_t)
UNBOX_FUNC(int32, int32_t)
UNBOX_FUNC(uint32, uint32_t)
UNBOX_FUNC(int64, int64_t)
UNBOX_FUNC(uint64, uint64_t)
UNBOX_FUNC(bool, int8_t)
UNBOX_FUNC(float32, float)
UNBOX_FUNC(float64, double)
UNBOX_FUNC(voidpointer, void*)
#define BOX_FUNC(typ,c_type,pfx,nw) \
JL_DLLEXPORT jl_value_t *pfx##_##typ(c_type x) \
{ \
jl_ptls_t ptls = jl_get_ptls_states(); \
jl_value_t *v = jl_gc_alloc(ptls, nw * sizeof(void*), \
jl_##typ##_type); \
*(c_type*)jl_data_ptr(v) = x; \
return v; \
}
BOX_FUNC(float32, float, jl_box, 1)
BOX_FUNC(voidpointer, void*, jl_box, 1)
#ifdef _P64
BOX_FUNC(float64, double, jl_box, 1)
#else
BOX_FUNC(float64, double, jl_box, 2)
#endif
#define NBOX_C 1024
#define SIBOX_FUNC(typ,c_type,nw)\
static jl_value_t *boxed_##typ##_cache[NBOX_C]; \
JL_DLLEXPORT jl_value_t *jl_box_##typ(c_type x) \
{ \
jl_ptls_t ptls = jl_get_ptls_states(); \
c_type idx = x+NBOX_C/2; \
if ((u##c_type)idx < (u##c_type)NBOX_C) \
return boxed_##typ##_cache[idx]; \
jl_value_t *v = jl_gc_alloc(ptls, nw * sizeof(void*), \
jl_##typ##_type); \
*(c_type*)jl_data_ptr(v) = x; \
return v; \
}
#define UIBOX_FUNC(typ,c_type,nw) \
static jl_value_t *boxed_##typ##_cache[NBOX_C]; \
JL_DLLEXPORT jl_value_t *jl_box_##typ(c_type x) \
{ \
jl_ptls_t ptls = jl_get_ptls_states(); \
if (x < NBOX_C) \
return boxed_##typ##_cache[x]; \
jl_value_t *v = jl_gc_alloc(ptls, nw * sizeof(void*), \
jl_##typ##_type); \
*(c_type*)jl_data_ptr(v) = x; \
return v; \
}
SIBOX_FUNC(int16, int16_t, 1)
SIBOX_FUNC(int32, int32_t, 1)
UIBOX_FUNC(uint16, uint16_t, 1)
UIBOX_FUNC(uint32, uint32_t, 1)
UIBOX_FUNC(ssavalue, size_t, 1)
UIBOX_FUNC(slotnumber, size_t, 1)
#ifdef _P64
SIBOX_FUNC(int64, int64_t, 1)
UIBOX_FUNC(uint64, uint64_t, 1)
#else
SIBOX_FUNC(int64, int64_t, 2)
UIBOX_FUNC(uint64, uint64_t, 2)
#endif
static jl_value_t *boxed_char_cache[128];
JL_DLLEXPORT jl_value_t *jl_box_char(uint32_t x)
{
jl_ptls_t ptls = jl_get_ptls_states();
if (0 < (int32_t)x)
return boxed_char_cache[x >> 24];
jl_value_t *v = jl_gc_alloc(ptls, sizeof(void*), jl_char_type);
*(uint32_t*)jl_data_ptr(v) = x;
return v;
}
static jl_value_t *boxed_int8_cache[256];
JL_DLLEXPORT jl_value_t *jl_box_int8(int8_t x)
{
return boxed_int8_cache[(uint8_t)x];
}
static jl_value_t *boxed_uint8_cache[256];
JL_DLLEXPORT jl_value_t *jl_box_uint8(uint8_t x)
{
return boxed_uint8_cache[x];
}
void jl_init_int32_int64_cache(void)
{
int64_t i;
for(i=0; i < NBOX_C; i++) {
boxed_int32_cache[i] = jl_permbox32(jl_int32_type, i-NBOX_C/2);
boxed_int64_cache[i] = jl_permbox64(jl_int64_type, i-NBOX_C/2);
#ifdef _P64
boxed_ssavalue_cache[i] = jl_permbox64(jl_ssavalue_type, i);
boxed_slotnumber_cache[i] = jl_permbox64(jl_slotnumber_type, i);
#else
boxed_ssavalue_cache[i] = jl_permbox32(jl_ssavalue_type, i);
boxed_slotnumber_cache[i] = jl_permbox32(jl_slotnumber_type, i);
#endif
}
for(i=0; i < 256; i++) {
boxed_uint8_cache[i] = jl_permbox8(jl_uint8_type, i);
}
}
void jl_init_box_caches(void)
{
int64_t i;
for(i=0; i < 128; i++) {
boxed_char_cache[i] = jl_permbox32(jl_char_type, i << 24);
}
for(i=0; i < 256; i++) {
boxed_int8_cache[i] = jl_permbox8(jl_int8_type, i);
}
for(i=0; i < NBOX_C; i++) {
boxed_int16_cache[i] = jl_permbox16(jl_int16_type, i-NBOX_C/2);
boxed_uint16_cache[i] = jl_permbox16(jl_uint16_type, i);
boxed_uint32_cache[i] = jl_permbox32(jl_uint32_type, i);
boxed_uint64_cache[i] = jl_permbox64(jl_uint64_type, i);
}
}
JL_DLLEXPORT jl_value_t *jl_box_bool(int8_t x)
{
if (x)
return jl_true;
return jl_false;
}
// struct constructors --------------------------------------------------------
JL_DLLEXPORT jl_value_t *jl_new_struct(jl_datatype_t *type, ...)
{
jl_ptls_t ptls = jl_get_ptls_states();
if (type->instance != NULL) return type->instance;
va_list args;
size_t nf = jl_datatype_nfields(type);
va_start(args, type);
jl_value_t *jv = jl_gc_alloc(ptls, jl_datatype_size(type), type);
for (size_t i = 0; i < nf; i++) {
jl_set_nth_field(jv, i, va_arg(args, jl_value_t*));
}
va_end(args);
return jv;
}
JL_DLLEXPORT jl_value_t *jl_new_structv(jl_datatype_t *type, jl_value_t **args,
uint32_t na)
{
jl_ptls_t ptls = jl_get_ptls_states();
if (type->instance != NULL) return type->instance;
size_t nf = jl_datatype_nfields(type);
jl_value_t *jv = jl_gc_alloc(ptls, jl_datatype_size(type), type);
JL_GC_PUSH1(&jv);
for (size_t i = 0; i < na; i++) {
jl_value_t *ft = jl_field_type(type, i);
if (!jl_isa(args[i], ft))
jl_type_error("new", ft, args[i]);
jl_set_nth_field(jv, i, args[i]);
}
for(size_t i=na; i < nf; i++) {
if (jl_field_isptr(type, i)) {
*(jl_value_t**)((char*)jl_data_ptr(jv)+jl_field_offset(type,i)) = NULL;
} else {
jl_value_t *ft = jl_field_type(type, i);
if (jl_is_uniontype(ft)) {
uint8_t *psel = &((uint8_t *)jv)[jl_field_offset(type, i) + jl_field_size(type, i) - 1];
*psel = 0;
}
}
}
JL_GC_POP();
return jv;
}
JL_DLLEXPORT jl_value_t *jl_new_struct_uninit(jl_datatype_t *type)
{
jl_ptls_t ptls = jl_get_ptls_states();
if (type->instance != NULL) return type->instance;
size_t size = jl_datatype_size(type);
jl_value_t *jv = jl_gc_alloc(ptls, size, type);
if (size > 0)
memset(jl_data_ptr(jv), 0, size);
return jv;
}
// field access ---------------------------------------------------------------
JL_DLLEXPORT int jl_field_index(jl_datatype_t *t, jl_sym_t *fld, int err)
{
jl_svec_t *fn = jl_field_names(t);
for(size_t i=0; i < jl_svec_len(fn); i++) {
if (jl_svecref(fn,i) == (jl_value_t*)fld) {
return (int)i;
}
}
if (err)
jl_errorf("type %s has no field %s", jl_symbol_name(t->name->name),
jl_symbol_name(fld));
return -1;
}
JL_DLLEXPORT jl_value_t *jl_get_nth_field(jl_value_t *v, size_t i)
{
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
assert(i < jl_datatype_nfields(st));
size_t offs = jl_field_offset(st, i);
if (jl_field_isptr(st, i)) {
return *(jl_value_t**)((char*)v + offs);
}
jl_value_t *ty = jl_field_type(st, i);
if (jl_is_uniontype(ty)) {
uint8_t sel = ((uint8_t*)v)[offs + jl_field_size(st, i) - 1];
ty = jl_nth_union_component(ty, sel);
if (jl_is_datatype_singleton((jl_datatype_t*)ty))
return ((jl_datatype_t*)ty)->instance;
}
return jl_new_bits(ty, (char*)v + offs);
}
JL_DLLEXPORT jl_value_t *jl_get_nth_field_noalloc(jl_value_t *v JL_PROPAGATES_ROOT, size_t i) JL_NOTSAFEPOINT
{
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
assert(i < jl_datatype_nfields(st));
size_t offs = jl_field_offset(st,i);
assert(jl_field_isptr(st,i));
return *(jl_value_t**)((char*)v + offs);
}
JL_DLLEXPORT jl_value_t *jl_get_nth_field_checked(jl_value_t *v, size_t i)
{
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
if (i >= jl_datatype_nfields(st))
jl_bounds_error_int(v, i + 1);
size_t offs = jl_field_offset(st, i);
if (jl_field_isptr(st, i)) {
jl_value_t *fval = *(jl_value_t**)((char*)v + offs);
if (fval == NULL)
jl_throw(jl_undefref_exception);
return fval;
}
jl_value_t *ty = jl_field_type(st, i);
if (jl_is_uniontype(ty)) {
size_t fsz = jl_field_size(st, i);
uint8_t sel = ((uint8_t*)v)[offs + fsz - 1];
ty = jl_nth_union_component(ty, sel);
if (jl_is_datatype_singleton((jl_datatype_t*)ty))
return ((jl_datatype_t*)ty)->instance;
}
return jl_new_bits(ty, (char*)v + offs);
}
JL_DLLEXPORT void jl_set_nth_field(jl_value_t *v, size_t i, jl_value_t *rhs)
{
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
size_t offs = jl_field_offset(st, i);
if (jl_field_isptr(st, i)) {
*(jl_value_t**)((char*)v + offs) = rhs;
if (rhs != NULL) jl_gc_wb(v, rhs);
}
else {
jl_value_t *ty = jl_field_type(st, i);
if (jl_is_uniontype(ty)) {
uint8_t *psel = &((uint8_t*)v)[offs + jl_field_size(st, i) - 1];
unsigned nth = 0;
if (!jl_find_union_component(ty, jl_typeof(rhs), &nth))
assert(0 && "invalid field assignment to isbits union");
*psel = nth;
if (jl_is_datatype_singleton((jl_datatype_t*)jl_typeof(rhs)))
return;
}
jl_assign_bits((char*)v + offs, rhs);
}
}
JL_DLLEXPORT int jl_field_isdefined(jl_value_t *v, size_t i)
{
jl_datatype_t *st = (jl_datatype_t*)jl_typeof(v);
size_t offs = jl_field_offset(st, i);
if (jl_field_isptr(st, i)) {
return *(jl_value_t**)((char*)v + offs) != NULL;
}
return 1;
}
JL_DLLEXPORT size_t jl_get_field_offset(jl_datatype_t *ty, int field)
{
if (ty->layout == NULL || field > jl_datatype_nfields(ty) || field < 1)
jl_bounds_error_int((jl_value_t*)ty, field);
return jl_field_offset(ty, field - 1);
}
#ifdef __cplusplus
}
#endif