-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathabstractarraymath.jl
431 lines (368 loc) · 10.1 KB
/
abstractarraymath.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# This file is a part of Julia. License is MIT: https://julialang.org/license
## Basic functions ##
isreal(x::AbstractArray) = all(isreal,x)
iszero(x::AbstractArray) = all(iszero,x)
isreal(x::AbstractArray{<:Real}) = true
all(::typeof(isinteger), ::AbstractArray{<:Integer}) = true
## Constructors ##
"""
vec(a::AbstractArray) -> Vector
Reshape the array `a` as a one-dimensional column vector. The resulting array
shares the same underlying data as `a`, so modifying one will also modify the
other.
```jldoctest
julia> a = [1 2 3; 4 5 6]
2×3 Array{Int64,2}:
1 2 3
4 5 6
julia> vec(a)
6-element Array{Int64,1}:
1
4
2
5
3
6
```
See also [`reshape`](@ref).
"""
vec(a::AbstractArray) = reshape(a,_length(a))
vec(a::AbstractVector) = a
_sub(::Tuple{}, ::Tuple{}) = ()
_sub(t::Tuple, ::Tuple{}) = t
_sub(t::Tuple, s::Tuple) = _sub(tail(t), tail(s))
"""
squeeze(A, dims)
Remove the dimensions specified by `dims` from array `A`.
Elements of `dims` must be unique and within the range `1:ndims(A)`.
`size(A,i)` must equal 1 for all `i` in `dims`.
```jldoctest
julia> a = reshape(collect(1:4),(2,2,1,1))
2×2×1×1 Array{Int64,4}:
[:, :, 1, 1] =
1 3
2 4
julia> squeeze(a,3)
2×2×1 Array{Int64,3}:
[:, :, 1] =
1 3
2 4
```
"""
function squeeze(A::AbstractArray, dims::Dims)
for i in 1:length(dims)
1 <= dims[i] <= ndims(A) || throw(ArgumentError("squeezed dims must be in range 1:ndims(A)"))
size(A, dims[i]) == 1 || throw(ArgumentError("squeezed dims must all be size 1"))
for j = 1:i-1
dims[j] == dims[i] && throw(ArgumentError("squeezed dims must be unique"))
end
end
d = ()
for i = 1:ndims(A)
if !in(i, dims)
d = tuple(d..., size(A, i))
end
end
reshape(A, d::typeof(_sub(size(A), dims)))
end
squeeze(A::AbstractArray, dim::Integer) = squeeze(A, (Int(dim),))
## Unary operators ##
conj(x::AbstractArray{<:Real}) = x
conj!(x::AbstractArray{<:Real}) = x
real(x::AbstractArray{<:Real}) = x
imag(x::AbstractArray{<:Real}) = zero(x)
+(x::AbstractArray{<:Number}) = x
*(x::AbstractArray{<:Number,2}) = x
# index A[:,:,...,i,:,:,...] where "i" is in dimension "d"
"""
slicedim(A, d::Integer, i)
Return all the data of `A` where the index for dimension `d` equals `i`. Equivalent to
`A[:,:,...,i,:,:,...]` where `i` is in position `d`.
```jldoctest
julia> A = [1 2 3 4; 5 6 7 8]
2×4 Array{Int64,2}:
1 2 3 4
5 6 7 8
julia> slicedim(A,2,3)
2-element Array{Int64,1}:
3
7
```
"""
function slicedim(A::AbstractArray, d::Integer, i)
d >= 1 || throw(ArgumentError("dimension must be ≥ 1"))
nd = ndims(A)
d > nd && (i == 1 || throw_boundserror(A, (ntuple(k->Colon(),nd)..., ntuple(k->1,d-1-nd)..., i)))
A[setindex(indices(A), i, d)...]
end
"""
flipdim(A, d::Integer)
Reverse `A` in dimension `d`.
```jldoctest
julia> b = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> flipdim(b,2)
2×2 Array{Int64,2}:
2 1
4 3
```
"""
function flipdim(A::AbstractArray, d::Integer)
nd = ndims(A)
1 ≤ d ≤ nd || throw(ArgumentError("dimension $d is not 1 ≤ $d ≤ $nd"))
if isempty(A)
return copy(A)
elseif nd == 1
return reverse(A)
end
inds = indices(A)
B = similar(A)
nnd = 0
for i = 1:nd
nnd += Int(length(inds[i])==1 || i==d)
end
indsd = inds[d]
sd = first(indsd)+last(indsd)
if nnd==nd
# flip along the only non-singleton dimension
for i in indsd
B[i] = A[sd-i]
end
return B
end
alli = [ indices(B,n) for n in 1:nd ]
for i in indsd
B[[ n==d ? sd-i : alli[n] for n in 1:nd ]...] = slicedim(A, d, i)
end
return B
end
function circshift(a::AbstractArray, shiftamt::Real)
circshift!(similar(a), a, (Integer(shiftamt),))
end
circshift(a::AbstractArray, shiftamt::DimsInteger) = circshift!(similar(a), a, shiftamt)
"""
circshift(A, shifts)
Circularly shift the data in an array. The second argument is a vector giving the amount to
shift in each dimension.
```jldoctest
julia> b = reshape(collect(1:16), (4,4))
4×4 Array{Int64,2}:
1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16
julia> circshift(b, (0,2))
4×4 Array{Int64,2}:
9 13 1 5
10 14 2 6
11 15 3 7
12 16 4 8
julia> circshift(b, (-1,0))
4×4 Array{Int64,2}:
2 6 10 14
3 7 11 15
4 8 12 16
1 5 9 13
```
See also [`circshift!`](@ref).
"""
function circshift(a::AbstractArray, shiftamt)
circshift!(similar(a), a, map(Integer, (shiftamt...,)))
end
# Uses K-B-N summation
function cumsum_kbn(v::AbstractVector{T}) where T<:AbstractFloat
r = similar(v)
if isempty(v); return r; end
inds = indices(v, 1)
i1 = first(inds)
s = r[i1] = v[i1]
c = zero(T)
for i=i1+1:last(inds)
vi = v[i]
t = s + vi
if abs(s) >= abs(vi)
c += ((s-t) + vi)
else
c += ((vi-t) + s)
end
s = t
r[i] = s+c
end
return r
end
# Uses K-B-N summation
# TODO: Needs a separate IndexCartesian method, this is only fast for IndexLinear
"""
cumsum_kbn(A, [dim::Integer=1])
Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation
algorithm for additional accuracy. The dimension defaults to 1.
"""
function cumsum_kbn(A::AbstractArray{T}, axis::Integer=1) where T<:AbstractFloat
dimsA = size(A)
ndimsA = ndims(A)
axis_size = dimsA[axis]
axis_stride = 1
for i = 1:(axis-1)
axis_stride *= size(A,i)
end
if axis_size <= 1
return A
end
B = similar(A)
C = similar(A)
for i = 1:length(A)
if div(i-1, axis_stride) % axis_size == 0
B[i] = A[i]
C[i] = zero(T)
else
s = B[i-axis_stride]
Ai = A[i]
B[i] = t = s + Ai
if abs(s) >= abs(Ai)
C[i] = C[i-axis_stride] + ((s-t) + Ai)
else
C[i] = C[i-axis_stride] + ((Ai-t) + s)
end
end
end
return B + C
end
## Other array functions ##
"""
repmat(A, m::Integer, n::Integer=1)
Construct a matrix by repeating the given matrix (or vector) `m` times in dimension 1 and `n` times in
dimension 2.
```jldoctest
julia> repmat([1, 2, 3], 2)
6-element Array{Int64,1}:
1
2
3
1
2
3
julia> repmat([1, 2, 3], 2, 3)
6×3 Array{Int64,2}:
1 1 1
2 2 2
3 3 3
1 1 1
2 2 2
3 3 3
```
"""
function repmat(a::AbstractVecOrMat, m::Int, n::Int=1)
o, p = size(a,1), size(a,2)
b = similar(a, o*m, p*n)
for j=1:n
d = (j-1)*p+1
R = d:d+p-1
for i=1:m
c = (i-1)*o+1
b[c:c+o-1, R] = a
end
end
return b
end
function repmat(a::AbstractVector, m::Int)
o = length(a)
b = similar(a, o*m)
for i=1:m
c = (i-1)*o+1
b[c:c+o-1] = a
end
return b
end
@inline repmat(a::AbstractVecOrMat, m::Integer, n::Integer=1) = repmat(a, Int(m), Int(n))
@inline repmat(a::AbstractVector, m::Integer) = repmat(a, Int(m))
"""
repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))
Construct an array by repeating the entries of `A`. The i-th element of `inner` specifies
the number of times that the individual entries of the i-th dimension of `A` should be
repeated. The i-th element of `outer` specifies the number of times that a slice along the
i-th dimension of `A` should be repeated. If `inner` or `outer` are omitted, no repetition
is performed.
```jldoctest
julia> repeat(1:2, inner=2)
4-element Array{Int64,1}:
1
1
2
2
julia> repeat(1:2, outer=2)
4-element Array{Int64,1}:
1
2
1
2
julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))
4×6 Array{Int64,2}:
1 2 1 2 1 2
1 2 1 2 1 2
3 4 3 4 3 4
3 4 3 4 3 4
```
"""
function repeat(A::AbstractArray;
inner=ntuple(n->1, Val{ndims(A)}),
outer=ntuple(n->1, Val{ndims(A)}))
return _repeat(A, rep_kw2tup(inner), rep_kw2tup(outer))
end
rep_kw2tup(n::Integer) = (n,)
rep_kw2tup(v::AbstractArray{<:Integer}) = (v...)
rep_kw2tup(t::Tuple) = t
rep_shapes(A, i, o) = _rshps((), (), size(A), i, o)
_rshps(shp, shp_i, ::Tuple{}, ::Tuple{}, ::Tuple{}) = (shp, shp_i)
@inline _rshps(shp, shp_i, ::Tuple{}, ::Tuple{}, o) =
_rshps((shp..., o[1]), (shp_i..., 1), (), (), tail(o))
@inline _rshps(shp, shp_i, ::Tuple{}, i, ::Tuple{}) = (n = i[1];
_rshps((shp..., n), (shp_i..., n), (), tail(i), ()))
@inline _rshps(shp, shp_i, ::Tuple{}, i, o) = (n = i[1];
_rshps((shp..., n * o[1]), (shp_i..., n), (), tail(i), tail(o)))
@inline _rshps(shp, shp_i, sz, i, o) = (n = sz[1] * i[1];
_rshps((shp..., n * o[1]), (shp_i..., n), tail(sz), tail(i), tail(o)))
_rshps(shp, shp_i, sz, ::Tuple{}, ::Tuple{}) =
(n = length(shp); N = n + length(sz); _reperr("inner", n, N))
_rshps(shp, shp_i, sz, ::Tuple{}, o) =
(n = length(shp); N = n + length(sz); _reperr("inner", n, N))
_rshps(shp, shp_i, sz, i, ::Tuple{}) =
(n = length(shp); N = n + length(sz); _reperr("outer", n, N))
_reperr(s, n, N) = throw(ArgumentError("number of " * s * " repetitions " *
"($n) cannot be less than number of dimensions of input ($N)"))
@propagate_inbounds function _repeat(A::AbstractArray, inner, outer)
shape, inner_shape = rep_shapes(A, inner, outer)
R = similar(A, shape)
if any(iszero, shape)
return R
end
# fill the first inner block
if all(x -> x == 1, inner)
R[indices(A)...] = A
else
inner_indices = [1:n for n in inner]
for c in CartesianRange(indices(A))
for i in 1:ndims(A)
n = inner[i]
inner_indices[i] = (1:n) + ((c[i] - 1) * n)
end
R[inner_indices...] = A[c]
end
end
# fill the outer blocks along each dimension
if all(x -> x == 1, outer)
return R
end
src_indices = [1:n for n in inner_shape]
dest_indices = copy(src_indices)
for i in 1:length(outer)
B = view(R, src_indices...)
for j in 2:outer[i]
dest_indices[i] += inner_shape[i]
R[dest_indices...] = B
end
src_indices[i] = dest_indices[i] = 1:shape[i]
end
return R
end