-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy patheigen.jl
149 lines (130 loc) · 5.3 KB
/
eigen.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestEigen
using Test, LinearAlgebra, Random
using LinearAlgebra: BlasComplex, BlasFloat, BlasReal, QRPivoted
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
Random.seed!(1234321)
areal = randn(n,n)/2
aimg = randn(n,n)/2
@testset for eltya in (Float32, Float64, ComplexF32, ComplexF64, Int)
aa = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex.(areal, aimg) : areal)
asym = aa' + aa # symmetric indefinite
apd = aa' * aa # symmetric positive-definite
for (a, asym, apd) in ((aa, asym, apd),
(view(aa, 1:n, 1:n),
view(asym, 1:n, 1:n),
view(apd, 1:n, 1:n)))
ε = εa = eps(abs(float(one(eltya))))
α = rand(eltya)
β = rand(eltya)
eab = eigen(α,β)
@test eab.values == eigvals(fill(α,1,1),fill(β,1,1))
@test eab.vectors == eigvecs(fill(α,1,1),fill(β,1,1))
@testset "non-symmetric eigen decomposition" begin
d, v = eigen(a)
for i in 1:size(a,2)
@test a*v[:,i] ≈ d[i]*v[:,i]
end
f = eigen(a)
@test det(a) ≈ det(f)
@test inv(a) ≈ inv(f)
@test isposdef(a) == isposdef(f)
@test eigvals(f) === f.values
@test eigvecs(f) === f.vectors
@test Array(f) ≈ a
num_fact = eigen(one(eltya))
@test num_fact.values[1] == one(eltya)
h = asym
@test minimum(eigvals(h)) ≈ eigmin(h)
@test maximum(eigvals(h)) ≈ eigmax(h)
@test_throws DomainError eigmin(a - a')
@test_throws DomainError eigmax(a - a')
end
@testset "symmetric generalized eigenproblem" begin
if isa(a, Array)
asym_sg = asym[1:n1, 1:n1]
a_sg = a[:,n1+1:n2]
else
asym_sg = view(asym, 1:n1, 1:n1)
a_sg = view(a, 1:n, n1+1:n2)
end
f = eigen(asym_sg, a_sg'a_sg)
@test asym_sg*f.vectors ≈ (a_sg'a_sg*f.vectors) * Diagonal(f.values)
@test f.values ≈ eigvals(asym_sg, a_sg'a_sg)
@test prod(f.values) ≈ prod(eigvals(asym_sg/(a_sg'a_sg))) atol=200ε
@test eigvecs(asym_sg, a_sg'a_sg) == f.vectors
@test eigvals(f) === f.values
@test eigvecs(f) === f.vectors
@test_throws ErrorException f.Z
d,v = eigen(asym_sg, a_sg'a_sg)
@test d == f.values
@test v == f.vectors
end
@testset "Non-symmetric generalized eigenproblem" begin
if isa(a, Array)
a1_nsg = a[1:n1, 1:n1]
a2_nsg = a[n1+1:n2, n1+1:n2]
else
a1_nsg = view(a, 1:n1, 1:n1)
a2_nsg = view(a, n1+1:n2, n1+1:n2)
end
sortfunc = x -> real(x) + imag(x)
f = eigen(a1_nsg, a2_nsg; sortby = sortfunc)
@test a1_nsg*f.vectors ≈ (a2_nsg*f.vectors) * Diagonal(f.values)
@test f.values ≈ eigvals(a1_nsg, a2_nsg; sortby = sortfunc)
@test prod(f.values) ≈ prod(eigvals(a1_nsg/a2_nsg, sortby = sortfunc)) atol=50000ε
@test eigvecs(a1_nsg, a2_nsg; sortby = sortfunc) == f.vectors
@test_throws ErrorException f.Z
d,v = eigen(a1_nsg, a2_nsg; sortby = sortfunc)
@test d == f.values
@test v == f.vectors
end
end
end
@testset "eigenvalue computations with NaNs" begin
for eltya in (NaN16, NaN32, NaN)
@test_throws(ArgumentError, eigen(fill(eltya, 1, 1)))
@test_throws(ArgumentError, eigen(fill(eltya, 2, 2)))
test_matrix = rand(typeof(eltya),3,3)
test_matrix[1,3] = eltya
@test_throws(ArgumentError, eigen(test_matrix))
@test_throws(ArgumentError, eigen(Symmetric(test_matrix)))
@test_throws(ArgumentError, eigen(Hermitian(test_matrix)))
@test eigen(Symmetric(test_matrix, :L)) isa Eigen
@test eigen(Hermitian(test_matrix, :L)) isa Eigen
end
end
# test a matrix larger than 140-by-140 for #14174
let aa = rand(200, 200)
for a in (aa, view(aa, 1:n, 1:n))
f = eigen(a)
@test a ≈ f.vectors * Diagonal(f.values) / f.vectors
end
end
@testset "rational promotion: issue #24935" begin
A = [1//2 0//1; 0//1 2//3]
for λ in (eigvals(A), @inferred(eigvals(Symmetric(A))))
@test λ isa Vector{Float64}
@test λ ≈ [0.5, 2/3]
end
end
@testset "text/plain (REPL) printing of Eigen and GeneralizedEigen" begin
A, B = randn(5,5), randn(5,5)
e = eigen(A)
ge = eigen(A, B)
valsstring = sprint((t, s) -> show(t, "text/plain", s), e.values)
vecsstring = sprint((t, s) -> show(t, "text/plain", s), e.vectors)
factstring = sprint((t, s) -> show(t, "text/plain", s), e)
@test factstring == "$(summary(e))\nvalues:\n$valsstring\nvectors:\n$vecsstring"
end
@testset "eigen of an Adjoint" begin
A = randn(3,3)
@test eigvals(A') == eigvals(copy(A'))
@test eigen(A') == eigen(copy(A'))
@test eigmin(A') == eigmin(copy(A'))
@test eigmax(A') == eigmax(copy(A'))
end
end # module TestEigen