-
-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
Copy pathint.jl
902 lines (700 loc) · 24.2 KB
/
int.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
# This file is a part of Julia. License is MIT: https://julialang.org/license
## integer arithmetic ##
# The tuples and types that do not include 128 bit sizes are necessary to handle
# certain issues on 32-bit machines, and also to simplify promotion rules, as
# they are also used elsewhere where Int128/UInt128 support is separated out,
# such as in hashing2.jl
const BitSigned32_types = (Int8, Int16, Int32)
const BitUnsigned32_types = (UInt8, UInt16, UInt32)
const BitInteger32_types = (BitSigned32_types..., BitUnsigned32_types...)
const BitSigned64_types = (BitSigned32_types..., Int64)
const BitUnsigned64_types = (BitUnsigned32_types..., UInt64)
const BitInteger64_types = (BitSigned64_types..., BitUnsigned64_types...)
const BitSigned_types = (BitSigned64_types..., Int128)
const BitUnsigned_types = (BitUnsigned64_types..., UInt128)
const BitInteger_types = (BitSigned_types..., BitUnsigned_types...)
const BitSignedSmall_types = Int === Int64 ? ( Int8, Int16, Int32) : ( Int8, Int16)
const BitUnsignedSmall_types = Int === Int64 ? (UInt8, UInt16, UInt32) : (UInt8, UInt16)
const BitIntegerSmall_types = (BitSignedSmall_types..., BitUnsignedSmall_types...)
const BitSigned32 = Union{BitSigned32_types...}
const BitUnsigned32 = Union{BitUnsigned32_types...}
const BitInteger32 = Union{BitInteger32_types...}
const BitSigned64 = Union{BitSigned64_types...}
const BitUnsigned64 = Union{BitUnsigned64_types...}
const BitInteger64 = Union{BitInteger64_types...}
const BitSigned = Union{BitSigned_types...}
const BitUnsigned = Union{BitUnsigned_types...}
const BitInteger = Union{BitInteger_types...}
const BitSignedSmall = Union{BitSignedSmall_types...}
const BitUnsignedSmall = Union{BitUnsignedSmall_types...}
const BitIntegerSmall = Union{BitIntegerSmall_types...}
const BitSigned64T = Union{Type{Int8}, Type{Int16}, Type{Int32}, Type{Int64}}
const BitUnsigned64T = Union{Type{UInt8}, Type{UInt16}, Type{UInt32}, Type{UInt64}}
const BitIntegerType = Union{map(T->Type{T}, BitInteger_types)...}
# >> this use of `unsigned` is defined somewhere else << the docstring should migrate there
"""
unsigned(T::Integer)
Convert an integer bitstype to the unsigned type of the same size.
# Examples
```jldoctest
julia> unsigned(Int16)
UInt16
julia> unsigned(UInt64)
UInt64
```
""" unsigned
"""
signed(T::Integer)
Convert an integer bitstype to the signed type of the same size.
# Examples
```jldoctest
julia> signed(UInt16)
Int16
julia> signed(UInt64)
Int64
```
"""
signed(::Type{Bool}) = Int
signed(::Type{UInt8}) = Int8
signed(::Type{UInt16}) = Int16
signed(::Type{UInt32}) = Int32
signed(::Type{UInt64}) = Int64
signed(::Type{UInt128}) = Int128
signed(::Type{T}) where {T<:Signed} = T
## integer comparisons ##
(<)(x::T, y::T) where {T<:BitSigned} = slt_int(x, y)
(-)(x::BitInteger) = neg_int(x)
(-)(x::T, y::T) where {T<:BitInteger} = sub_int(x, y)
(+)(x::T, y::T) where {T<:BitInteger} = add_int(x, y)
(*)(x::T, y::T) where {T<:BitInteger} = mul_int(x, y)
negate(x) = -x
negate(x::Unsigned) = -convert(Signed, x)
#widenegate(x) = -convert(widen(signed(typeof(x))), x)
inv(x::Integer) = float(one(x)) / float(x)
(/)(x::T, y::T) where {T<:Integer} = float(x) / float(y)
# skip promotion for system integer types
(/)(x::BitInteger, y::BitInteger) = float(x) / float(y)
"""
isodd(x::Number) -> Bool
Return `true` if `x` is an odd integer (that is, an integer not divisible by 2), and `false` otherwise.
!!! compat "Julia 1.7"
Non-`Integer` arguments require Julia 1.7 or later.
# Examples
```jldoctest
julia> isodd(9)
true
julia> isodd(10)
false
```
"""
isodd(n::Number) = isreal(n) && isodd(real(n))
isodd(n::Real) = isinteger(n) && !iszero(rem(Integer(n), 2))
"""
iseven(x::Number) -> Bool
Return `true` if `x` is an even integer (that is, an integer divisible by 2), and `false` otherwise.
!!! compat "Julia 1.7"
Non-`Integer` arguments require Julia 1.7 or later.
# Examples
```jldoctest
julia> iseven(9)
false
julia> iseven(10)
true
```
"""
iseven(n::Number) = isreal(n) && iseven(real(n))
iseven(n::Real) = isinteger(n) && iszero(rem(Integer(n), 2))
signbit(x::Integer) = x < 0
signbit(x::Unsigned) = false
flipsign(x::T, y::T) where {T<:BitSigned} = flipsign_int(x, y)
flipsign(x::BitSigned, y::BitSigned) = flipsign_int(promote(x, y)...) % typeof(x)
flipsign(x::Signed, y::Float16) = flipsign(x, bitcast(Int16, y))
flipsign(x::Signed, y::Float32) = flipsign(x, bitcast(Int32, y))
flipsign(x::Signed, y::Float64) = flipsign(x, bitcast(Int64, y))
flipsign(x::Signed, y::Real) = flipsign(x, -oftype(x, signbit(y)))
copysign(x::Signed, y::Signed) = flipsign(x, x ⊻ y)
copysign(x::Signed, y::Float16) = copysign(x, bitcast(Int16, y))
copysign(x::Signed, y::Float32) = copysign(x, bitcast(Int32, y))
copysign(x::Signed, y::Float64) = copysign(x, bitcast(Int64, y))
copysign(x::Signed, y::Real) = copysign(x, -oftype(x, signbit(y)))
"""
abs(x)
The absolute value of `x`.
When `abs` is applied to signed integers, overflow may occur,
resulting in the return of a negative value. This overflow occurs only
when `abs` is applied to the minimum representable value of a signed
integer. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,
not `-x` as might be expected.
See also: [`abs2`](@ref), [`unsigned`](@ref), [`sign`](@ref).
# Examples
```jldoctest
julia> abs(-3)
3
julia> abs(1 + im)
1.4142135623730951
julia> abs.(Int8[-128 -127 -126 0 126 127]) # overflow at typemin(Int8)
1×6 Matrix{Int8}:
-128 127 126 0 126 127
julia> maximum(abs, [1, -2, 3, -4])
4
```
"""
function abs end
abs(x::Unsigned) = x
abs(x::Signed) = flipsign(x,x)
~(n::Integer) = -n-1
"""
unsigned(x)
Convert a number to an unsigned integer. If the argument is signed, it is reinterpreted as
unsigned without checking for negative values.
See also: [`signed`](@ref), [`sign`](@ref), [`signbit`](@ref).
# Examples
```jldoctest
julia> unsigned(-2)
0xfffffffffffffffe
julia> unsigned(Int8(2))
0x02
julia> typeof(ans)
UInt8
julia> signed(unsigned(-2))
-2
```
"""
unsigned(x) = x % typeof(convert(Unsigned, zero(x)))
unsigned(x::BitSigned) = reinterpret(typeof(convert(Unsigned, zero(x))), x)
"""
signed(x)
Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as
signed without checking for overflow.
See also: [`unsigned`](@ref), [`sign`](@ref), [`signbit`](@ref).
"""
signed(x) = x % typeof(convert(Signed, zero(x)))
signed(x::BitUnsigned) = reinterpret(typeof(convert(Signed, zero(x))), x)
div(x::BitSigned, y::Unsigned) = flipsign(signed(div(unsigned(abs(x)), y)), x)
div(x::Unsigned, y::BitSigned) = unsigned(flipsign(signed(div(x, unsigned(abs(y)))), y))
rem(x::BitSigned, y::Unsigned) = flipsign(signed(rem(unsigned(abs(x)), y)), x)
rem(x::Unsigned, y::BitSigned) = rem(x, unsigned(abs(y)))
function divrem(x::BitSigned, y::Unsigned)
q, r = divrem(unsigned(abs(x)), y)
flipsign(signed(q), x), flipsign(signed(r), x)
end
function divrem(x::Unsigned, y::BitSigned)
q, r = divrem(x, unsigned(abs(y)))
unsigned(flipsign(signed(q), y)), r
end
"""
mod(x, y)
rem(x, y, RoundDown)
The reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored
division by `y`, i.e. `x - y*fld(x,y)` if computed without intermediate rounding.
The result will have the same sign as `y`, and magnitude less than `abs(y)` (with some
exceptions, see note below).
!!! note
When used with floating point values, the exact result may not be representable by the
type, and so rounding error may occur. In particular, if the exact result is very
close to `y`, then it may be rounded to `y`.
See also: [`rem`](@ref), [`div`](@ref), [`fld`](@ref), [`mod1`](@ref), [`invmod`](@ref).
```jldoctest
julia> mod(8, 3)
2
julia> mod(9, 3)
0
julia> mod(8.9, 3)
2.9000000000000004
julia> mod(eps(), 3)
2.220446049250313e-16
julia> mod(-eps(), 3)
3.0
julia> mod.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
1 2 0 1 2 0 1 2 0 1 2
```
"""
function mod(x::T, y::T) where T<:Integer
y == -1 && return T(0) # avoid potential overflow in fld
return x - fld(x, y) * y
end
function mod(x::BitSigned, y::Unsigned)
remval = rem(x, y) # correct iff remval>=0
return unsigned(remval + (remval<zero(remval))*y)
end
function mod(x::Unsigned, y::Signed)
remval = signed(rem(x, y)) #remval>0 so correct iff y>0 or remval==0
return remval + (!iszero(remval) && y<zero(y))*y
end
mod(x::T, y::T) where {T<:Unsigned} = rem(x, y)
# Don't promote integers for div/rem/mod since there is no danger of overflow,
# while there is a substantial performance penalty to 64-bit promotion.
div(x::T, y::T) where {T<:BitSigned64} = checked_sdiv_int(x, y)
rem(x::T, y::T) where {T<:BitSigned64} = checked_srem_int(x, y)
div(x::T, y::T) where {T<:BitUnsigned64} = checked_udiv_int(x, y)
rem(x::T, y::T) where {T<:BitUnsigned64} = checked_urem_int(x, y)
## integer bitwise operations ##
"""
~(x)
Bitwise not.
See also: [`!`](@ref), [`&`](@ref), [`|`](@ref).
# Examples
```jldoctest
julia> ~4
-5
julia> ~10
-11
julia> ~true
false
```
"""
(~)(x::BitInteger) = not_int(x)
"""
x & y
Bitwise and. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),
returning [`missing`](@ref) if one operand is `missing` and the other is `true`. Add parentheses for
function application form: `(&)(x, y)`.
See also: [`|`](@ref), [`xor`](@ref), [`&&`](@ref).
# Examples
```jldoctest
julia> 4 & 10
0
julia> 4 & 12
4
julia> true & missing
missing
julia> false & missing
false
```
"""
(&)(x::T, y::T) where {T<:BitInteger} = and_int(x, y)
"""
x | y
Bitwise or. Implements [three-valued logic](https://en.wikipedia.org/wiki/Three-valued_logic),
returning [`missing`](@ref) if one operand is `missing` and the other is `false`.
See also: [`&`](@ref), [`xor`](@ref), [`||`](@ref).
# Examples
```jldoctest
julia> 4 | 10
14
julia> 4 | 1
5
julia> true | missing
true
julia> false | missing
missing
```
"""
(|)(x::T, y::T) where {T<:BitInteger} = or_int(x, y)
xor(x::T, y::T) where {T<:BitInteger} = xor_int(x, y)
"""
bswap(n)
Reverse the byte order of `n`.
(See also [`ntoh`](@ref) and [`hton`](@ref) to convert between the current native byte order and big-endian order.)
# Examples
```jldoctest
julia> a = bswap(0x10203040)
0x40302010
julia> bswap(a)
0x10203040
julia> string(1, base = 2)
"1"
julia> string(bswap(1), base = 2)
"100000000000000000000000000000000000000000000000000000000"
```
"""
bswap(x::Union{Int8, UInt8, Bool}) = x
bswap(x::Union{Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128}) =
bswap_int(x)
"""
count_ones(x::Integer) -> Integer
Number of ones in the binary representation of `x`.
# Examples
```jldoctest
julia> count_ones(7)
3
julia> count_ones(Int32(-1))
32
```
"""
count_ones(x::BitInteger) = (ctpop_int(x) % Int)::Int
"""
leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of `x`.
# Examples
```jldoctest
julia> leading_zeros(Int32(1))
31
```
"""
leading_zeros(x::BitInteger) = (ctlz_int(x) % Int)::Int
"""
trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of `x`.
# Examples
```jldoctest
julia> trailing_zeros(2)
1
```
"""
trailing_zeros(x::BitInteger) = (cttz_int(x) % Int)::Int
"""
count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of `x`.
# Examples
```jldoctest
julia> count_zeros(Int32(2 ^ 16 - 1))
16
julia> count_zeros(-1)
0
```
"""
count_zeros(x::Integer) = count_ones(~x)
"""
leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of `x`.
# Examples
```jldoctest
julia> leading_ones(UInt32(2 ^ 32 - 2))
31
```
"""
leading_ones(x::Integer) = leading_zeros(~x)
"""
trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of `x`.
# Examples
```jldoctest
julia> trailing_ones(3)
2
```
"""
trailing_ones(x::Integer) = trailing_zeros(~x)
"""
top_set_bit(x::Integer) -> Integer
The number of bits in `x`'s binary representation, excluding leading zeros.
Equivalently, the position of the most significant set bit in `x`'s binary
representation, measured from the least significant side.
Negative `x` are only supported when `x::BitSigned`.
See also: [`ndigits0z`](@ref), [`ndigits`](@ref).
# Examples
```jldoctest
julia> Base.top_set_bit(4)
3
julia> Base.top_set_bit(0)
0
julia> Base.top_set_bit(-1)
64
```
"""
top_set_bit(x::BitInteger) = 8sizeof(x) - leading_zeros(x)
## integer comparisons ##
(< )(x::T, y::T) where {T<:BitUnsigned} = ult_int(x, y)
(<=)(x::T, y::T) where {T<:BitSigned} = sle_int(x, y)
(<=)(x::T, y::T) where {T<:BitUnsigned} = ule_int(x, y)
==(x::BitSigned, y::BitUnsigned) = (x >= 0) & (unsigned(x) == y)
==(x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x == unsigned(y))
<( x::BitSigned, y::BitUnsigned) = (x < 0) | (unsigned(x) < y)
<( x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x < unsigned(y))
<=(x::BitSigned, y::BitUnsigned) = (x < 0) | (unsigned(x) <= y)
<=(x::BitUnsigned, y::BitSigned ) = (y >= 0) & (x <= unsigned(y))
## integer shifts ##
# unsigned shift counts always shift in the same direction
>>(x::BitSigned, y::BitUnsigned) = ashr_int(x, y)
>>(x::BitUnsigned, y::BitUnsigned) = lshr_int(x, y)
<<(x::BitInteger, y::BitUnsigned) = shl_int(x, y)
>>>(x::BitInteger, y::BitUnsigned) = lshr_int(x, y)
# signed shift counts can shift in either direction
# note: this early during bootstrap, `>=` is not yet available
# note: we only define Int shift counts here; the generic case is handled later
>>(x::BitInteger, y::Int) =
ifelse(0 <= y, x >> unsigned(y), x << unsigned(-y))
<<(x::BitInteger, y::Int) =
ifelse(0 <= y, x << unsigned(y), x >> unsigned(-y))
>>>(x::BitInteger, y::Int) =
ifelse(0 <= y, x >>> unsigned(y), x << unsigned(-y))
for to in BitInteger_types, from in (BitInteger_types..., Bool)
if !(to === from)
if Core.sizeof(to) < Core.sizeof(from)
@eval rem(x::($from), ::Type{$to}) = trunc_int($to, x)
elseif from === Bool
@eval rem(x::($from), ::Type{$to}) = convert($to, x)
elseif Core.sizeof(from) < Core.sizeof(to)
if from <: Signed
@eval rem(x::($from), ::Type{$to}) = sext_int($to, x)
else
@eval rem(x::($from), ::Type{$to}) = convert($to, x)
end
else
@eval rem(x::($from), ::Type{$to}) = bitcast($to, x)
end
end
end
## integer bitwise rotations ##
"""
bitrotate(x::Base.BitInteger, k::Integer)
`bitrotate(x, k)` implements bitwise rotation.
It returns the value of `x` with its bits rotated left `k` times.
A negative value of `k` will rotate to the right instead.
!!! compat "Julia 1.5"
This function requires Julia 1.5 or later.
See also: [`<<`](@ref), [`circshift`](@ref), [`BitArray`](@ref).
```jldoctest
julia> bitrotate(UInt8(114), 2)
0xc9
julia> bitstring(bitrotate(0b01110010, 2))
"11001001"
julia> bitstring(bitrotate(0b01110010, -2))
"10011100"
julia> bitstring(bitrotate(0b01110010, 8))
"01110010"
```
"""
bitrotate(x::T, k::Integer) where {T <: BitInteger} =
(x << ((sizeof(T) << 3 - 1) & k)) | (x >>> ((sizeof(T) << 3 - 1) & -k))
for fname in (:mod, :rem)
@eval @doc """
rem(x::Integer, T::Type{<:Integer}) -> T
mod(x::Integer, T::Type{<:Integer}) -> T
%(x::Integer, T::Type{<:Integer}) -> T
Find `y::T` such that `x` ≡ `y` (mod n), where n is the number of integers representable
in `T`, and `y` is an integer in `[typemin(T),typemax(T)]`.
If `T` can represent any integer (e.g. `T == BigInt`), then this operation corresponds to
a conversion to `T`.
# Examples
```jldoctest
julia> x = 129 % Int8
-127
julia> typeof(x)
Int8
julia> x = 129 % BigInt
129
julia> typeof(x)
BigInt
```
""" $fname(x::Integer, T::Type{<:Integer})
end
rem(x::T, ::Type{T}) where {T<:Integer} = x
rem(x::Signed, ::Type{Unsigned}) = x % unsigned(typeof(x))
rem(x::Unsigned, ::Type{Signed}) = x % signed(typeof(x))
rem(x::Integer, T::Type{<:Integer}) = convert(T, x) # `x % T` falls back to `convert`
rem(x::Integer, ::Type{Bool}) = ((x & 1) != 0)
mod(x::Integer, ::Type{T}) where {T<:Integer} = rem(x, T)
unsafe_trunc(::Type{T}, x::Integer) where {T<:Integer} = rem(x, T)
## integer construction ##
"""
@int128_str str
Parse `str` as an [`Int128`](@ref).
Throw an `ArgumentError` if the string is not a valid integer.
# Examples
```jldoctest
julia> int128"123456789123"
123456789123
julia> int128"123456789123.4"
ERROR: LoadError: ArgumentError: invalid base 10 digit '.' in "123456789123.4"
[...]
```
"""
macro int128_str(s::String)
return parse(Int128, s)
end
"""
@uint128_str str
Parse `str` as an [`UInt128`](@ref).
Throw an `ArgumentError` if the string is not a valid integer.
# Examples
```
julia> uint128"123456789123"
0x00000000000000000000001cbe991a83
julia> uint128"-123456789123"
ERROR: LoadError: ArgumentError: invalid base 10 digit '-' in "-123456789123"
[...]
```
"""
macro uint128_str(s::String)
return parse(UInt128, s)
end
"""
@big_str str
Parse a string into a [`BigInt`](@ref) or [`BigFloat`](@ref),
and throw an `ArgumentError` if the string is not a valid number.
For integers `_` is allowed in the string as a separator.
# Examples
```jldoctest
julia> big"123_456"
123456
julia> big"7891.5"
7891.5
julia> big"_"
ERROR: ArgumentError: invalid number format _ for BigInt or BigFloat
[...]
```
!!! warning
Using `@big_str` for constructing [`BigFloat`](@ref) values may not result
in the behavior that might be naively expected: as a macro, `@big_str`
obeys the global precision ([`setprecision`](@ref)) and rounding mode
([`setrounding`](@ref)) settings as they are at *load time*. Thus, a
function like `() -> precision(big"0.3")` returns a constant whose value
depends on the value of the precision at the point when the function is
defined, **not** at the precision at the time when the function is called.
"""
macro big_str(s::String)
message = "invalid number format $s for BigInt or BigFloat"
throw_error = :(throw(ArgumentError($message)))
if '_' in s
# remove _ in s[2:end-1].
# Do not allow '_' right before or after dot.
bf = IOBuffer(sizehint=ncodeunits(s))
c = s[1]
print(bf, c)
is_prev_underscore = (c == '_')
is_prev_dot = (c == '.')
for c in SubString(s, nextind(s, 1), prevind(s, lastindex(s)))
c != '_' && print(bf, c)
c == '_' && is_prev_dot && return throw_error
c == '.' && is_prev_underscore && return throw_error
is_prev_underscore = (c == '_')
is_prev_dot = (c == '.')
end
print(bf, s[end])
s = String(take!(bf))
end
n = tryparse(BigInt, s)
n === nothing || return n
n = tryparse(BigFloat, s)
n === nothing || return n
return throw_error
end
## integer promotions ##
# with different sizes, promote to larger type
promote_rule(::Type{Int16}, ::Union{Type{Int8}, Type{UInt8}}) = Int16
promote_rule(::Type{Int32}, ::Union{Type{Int16}, Type{Int8}, Type{UInt16}, Type{UInt8}}) = Int32
promote_rule(::Type{Int64}, ::Union{Type{Int16}, Type{Int32}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt8}}) = Int64
promote_rule(::Type{Int128}, ::Union{Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}) = Int128
promote_rule(::Type{UInt16}, ::Union{Type{Int8}, Type{UInt8}}) = UInt16
promote_rule(::Type{UInt32}, ::Union{Type{Int16}, Type{Int8}, Type{UInt16}, Type{UInt8}}) = UInt32
promote_rule(::Type{UInt64}, ::Union{Type{Int16}, Type{Int32}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt8}}) = UInt64
promote_rule(::Type{UInt128}, ::Union{Type{Int16}, Type{Int32}, Type{Int64}, Type{Int8}, Type{UInt16}, Type{UInt32}, Type{UInt64}, Type{UInt8}}) = UInt128
# with mixed signedness and same size, Unsigned wins
promote_rule(::Type{UInt8}, ::Type{Int8} ) = UInt8
promote_rule(::Type{UInt16}, ::Type{Int16} ) = UInt16
promote_rule(::Type{UInt32}, ::Type{Int32} ) = UInt32
promote_rule(::Type{UInt64}, ::Type{Int64} ) = UInt64
promote_rule(::Type{UInt128}, ::Type{Int128}) = UInt128
## traits ##
"""
typemin(T)
The lowest value representable by the given (real) numeric DataType `T`.
See also: [`floatmin`](@ref), [`maxintfloat`](@ref), [`typemax`](@ref), [`eps`](@ref).
# Examples
```jldoctest
julia> typemin(Int8)
-128
julia> typemin(UInt32)
0x00000000
julia> typemin(Float16)
-Inf16
julia> typemin(Float32)
-Inf32
julia> floatmin(Float32) # smallest positive finite Float32 floating point number
1.1754944f-38
julia> nextfloat(-Inf32) == -floatmax(Float32) # equivalent ways of getting the lowest finite Float32 floating point number
true
```
"""
function typemin end
"""
typemax(T)
The highest value representable by the given (real) numeric `DataType`.
See also: [`floatmax`](@ref), [`maxintfloat`](@ref), [`typemin`](@ref), [`eps`](@ref).
# Examples
```jldoctest
julia> typemax(Int8)
127
julia> typemax(UInt32)
0xffffffff
julia> typemax(Float64)
Inf
julia> typemax(Float32)
Inf32
julia> floatmax(Float32) # largest positive finite Float32 floating point number
3.4028235f38
```
"""
function typemax end
typemin(::Type{Int8 }) = Int8(-128)
typemax(::Type{Int8 }) = Int8(127)
typemin(::Type{UInt8 }) = UInt8(0)
typemax(::Type{UInt8 }) = UInt8(255)
typemin(::Type{Int16 }) = Int16(-32768)
typemax(::Type{Int16 }) = Int16(32767)
typemin(::Type{UInt16}) = UInt16(0)
typemax(::Type{UInt16}) = UInt16(65535)
typemin(::Type{Int32 }) = Int32(-2147483648)
typemax(::Type{Int32 }) = Int32(2147483647)
typemin(::Type{UInt32}) = UInt32(0)
typemax(::Type{UInt32}) = UInt32(4294967295)
typemin(::Type{Int64 }) = -9223372036854775808
typemax(::Type{Int64 }) = 9223372036854775807
typemin(::Type{UInt64}) = UInt64(0)
typemax(::Type{UInt64}) = 0xffffffffffffffff
@eval typemin(::Type{UInt128}) = $(convert(UInt128, 0))
@eval typemax(::Type{UInt128}) = $(bitcast(UInt128, convert(Int128, -1)))
@eval typemin(::Type{Int128} ) = $(convert(Int128, 1) << 127)
@eval typemax(::Type{Int128} ) = $(bitcast(Int128, typemax(UInt128) >> 1))
widen(::Type{Int8}) = Int16
widen(::Type{Int16}) = Int32
widen(::Type{Int32}) = Int64
widen(::Type{Int64}) = Int128
widen(::Type{UInt8}) = UInt16
widen(::Type{UInt16}) = UInt32
widen(::Type{UInt32}) = UInt64
widen(::Type{UInt64}) = UInt128
# a few special cases,
# Int64*UInt64 => Int128
# |x|<=2^(k-1), |y|<=2^k-1 => |x*y|<=2^(2k-1)-1
widemul(x::Signed,y::Unsigned) = widen(x) * signed(widen(y))
widemul(x::Unsigned,y::Signed) = signed(widen(x)) * widen(y)
# multplication by Bool doesn't require widening
widemul(x::Bool,y::Bool) = x * y
widemul(x::Bool,y::Number) = x * y
widemul(x::Number,y::Bool) = x * y
# Int128 multiply and divide
*(x::T, y::T) where {T<:Union{Int128,UInt128}} = mul_int(x, y)
div(x::Int128, y::Int128) = checked_sdiv_int(x, y)
div(x::UInt128, y::UInt128) = checked_udiv_int(x, y)
rem(x::Int128, y::Int128) = checked_srem_int(x, y)
rem(x::UInt128, y::UInt128) = checked_urem_int(x, y)
# issue #15489: since integer ops are unchecked, they shouldn't check promotion
for op in (:+, :-, :*, :&, :|, :xor)
@eval function $op(a::Integer, b::Integer)
T = promote_typeof(a, b)
aT, bT = a % T, b % T
not_sametype((a, b), (aT, bT))
return $op(aT, bT)
end
end
const _mask1_uint128 = (UInt128(0x5555555555555555) << 64) | UInt128(0x5555555555555555)
const _mask2_uint128 = (UInt128(0x3333333333333333) << 64) | UInt128(0x3333333333333333)
const _mask4_uint128 = (UInt128(0x0f0f0f0f0f0f0f0f) << 64) | UInt128(0x0f0f0f0f0f0f0f0f)
"""
bitreverse(x)
Reverse the order of bits in integer `x`. `x` must have a fixed bit width,
e.g. be an `Int16` or `Int32`.
!!! compat "Julia 1.5"
This function requires Julia 1.5 or later.
# Examples
```jldoctest
julia> bitreverse(0x8080808080808080)
0x0101010101010101
julia> reverse(bitstring(0xa06e)) == bitstring(bitreverse(0xa06e))
true
```
"""
function bitreverse(x::BitInteger)
# TODO: consider using llvm.bitreverse intrinsic
z = unsigned(x)
mask1 = _mask1_uint128 % typeof(z)
mask2 = _mask2_uint128 % typeof(z)
mask4 = _mask4_uint128 % typeof(z)
z = ((z & mask1) << 1) | ((z >> 1) & mask1)
z = ((z & mask2) << 2) | ((z >> 2) & mask2)
z = ((z & mask4) << 4) | ((z >> 4) & mask4)
return bswap(z) % typeof(x)
end