You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: doc/stdlib/arrays.rst
+1
Original file line number
Diff line number
Diff line change
@@ -1080,3 +1080,4 @@ dense counterparts. The following functions are specific to sparse arrays.
1080
1080
For additional (algorithmic) information, and for versions of these methods that forgo argument checking, see (unexported) parent methods :func:`Base.SparseArrays.unchecked_noalias_permute!` and :func:`Base.SparseArrays.unchecked_aliasing_permute!`\ .
Copy file name to clipboardexpand all lines: doc/stdlib/linalg.rst
+6-6
Original file line number
Diff line number
Diff line change
@@ -110,7 +110,7 @@ Linear algebra functions in Julia are largely implemented by calling functions f
110
110
111
111
.. Docstring generated from Julia source
112
112
113
-
Constructs an upper (``isupper=true``\ ) or lower (``isupper=false``\ ) bidiagonal matrix using the given diagonal (``dv``\ ) and off-diagonal (``ev``\ ) vectors. The result is of type ``Bidiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`full`\ . ``ev``\ 's length must be one less than the length of ``dv``\ .
113
+
Constructs an upper (``isupper=true``\ ) or lower (``isupper=false``\ ) bidiagonal matrix using the given diagonal (``dv``\ ) and off-diagonal (``ev``\ ) vectors. The result is of type ``Bidiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`convert`\ . ``ev``\ 's length must be one less than the length of ``dv``\ .
114
114
115
115
**Example**
116
116
@@ -125,7 +125,7 @@ Linear algebra functions in Julia are largely implemented by calling functions f
125
125
126
126
.. Docstring generated from Julia source
127
127
128
-
Constructs an upper (``uplo='U'``\ ) or lower (``uplo='L'``\ ) bidiagonal matrix using the given diagonal (``dv``\ ) and off-diagonal (``ev``\ ) vectors. The result is of type ``Bidiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`full`\ . ``ev``\ 's length must be one less than the length of ``dv``\ .
128
+
Constructs an upper (``uplo='U'``\ ) or lower (``uplo='L'``\ ) bidiagonal matrix using the given diagonal (``dv``\ ) and off-diagonal (``ev``\ ) vectors. The result is of type ``Bidiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`convert`\ . ``ev``\ 's length must be one less than the length of ``dv``\ .
129
129
130
130
**Example**
131
131
@@ -154,13 +154,13 @@ Linear algebra functions in Julia are largely implemented by calling functions f
154
154
155
155
.. Docstring generated from Julia source
156
156
157
-
Construct a symmetric tridiagonal matrix from the diagonal and first sub/super-diagonal, respectively. The result is of type ``SymTridiagonal`` and provides efficient specialized eigensolvers, but may be converted into a regular matrix with :func:`full`\ .
157
+
Construct a symmetric tridiagonal matrix from the diagonal and first sub/super-diagonal, respectively. The result is of type ``SymTridiagonal`` and provides efficient specialized eigensolvers, but may be converted into a regular matrix with :func:`convert`\ .
158
158
159
159
.. function:: Tridiagonal(dl, d, du)
160
160
161
161
.. Docstring generated from Julia source
162
162
163
-
Construct a tridiagonal matrix from the first subdiagonal, diagonal, and first superdiagonal, respectively. The result is of type ``Tridiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`full`\ . The lengths of ``dl`` and ``du`` must be one less than the length of ``d``\ .
163
+
Construct a tridiagonal matrix from the first subdiagonal, diagonal, and first superdiagonal, respectively. The result is of type ``Tridiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`convert`\ . The lengths of ``dl`` and ``du`` must be one less than the length of ``d``\ .
164
164
165
165
.. function:: Symmetric(A, uplo=:U)
166
166
@@ -658,7 +658,7 @@ Linear algebra functions in Julia are largely implemented by calling functions f
658
658
659
659
.. Docstring generated from Julia source
660
660
661
-
Compute the Hessenberg decomposition of ``A`` and return a ``Hessenberg`` object. If ``F`` is the factorization object, the unitary matrix can be accessed with ``F[:Q]`` and the Hessenberg matrix with ``F[:H]``\ . When ``Q`` is extracted, the resulting type is the ``HessenbergQ`` object, and may be converted to a regular matrix with :func:`full`\ .
661
+
Compute the Hessenberg decomposition of ``A`` and return a ``Hessenberg`` object. If ``F`` is the factorization object, the unitary matrix can be accessed with ``F[:Q]`` and the Hessenberg matrix with ``F[:H]``\ . When ``Q`` is extracted, the resulting type is the ``HessenbergQ`` object, and may be converted to a regular matrix with :func:`convert`\ .
662
662
663
663
.. function:: hessfact!(A)
664
664
@@ -974,7 +974,7 @@ Linear algebra functions in Julia are largely implemented by calling functions f
974
974
975
975
.. Docstring generated from Julia source
976
976
977
-
Construct a tridiagonal matrix from the first subdiagonal, diagonal, and first superdiagonal, respectively. The result is of type ``Tridiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`full`\ . The lengths of ``dl`` and ``du`` must be one less than the length of ``d``\ .
977
+
Construct a tridiagonal matrix from the first subdiagonal, diagonal, and first superdiagonal, respectively. The result is of type ``Tridiagonal`` and provides efficient specialized linear solvers, but may be converted into a regular matrix with :func:`convert`\ . The lengths of ``dl`` and ``du`` must be one less than the length of ``d``\ .
0 commit comments