|
| 1 | +function angle_restrict_symm(theta) |
| 2 | + P1 = 4 * 7.8539812564849853515625e-01 |
| 3 | + P2 = 4 * 3.7748947079307981766760e-08 |
| 4 | + P3 = 4 * 2.6951514290790594840552e-15 |
| 5 | + |
| 6 | + y = 2*floor(theta/(2*pi)) |
| 7 | + r = ((theta - y*P1) - y*P2) - y*P3 |
| 8 | + if (r > pi) |
| 9 | + r -= (2*pi) |
| 10 | + end |
| 11 | + return r |
| 12 | +end |
| 13 | + |
| 14 | +const clg_coeff = [76.18009172947146, |
| 15 | + -86.50532032941677, |
| 16 | + 24.01409824083091, |
| 17 | + -1.231739572450155, |
| 18 | + 0.1208650973866179e-2, |
| 19 | + -0.5395239384953e-5] |
| 20 | + |
| 21 | +function clgamma_lanczos(z) |
| 22 | + sqrt2pi = 2.5066282746310005 |
| 23 | + |
| 24 | + y = x = z |
| 25 | + temp = x + 5.5 |
| 26 | + zz = log(temp) |
| 27 | + zz = zz * (x+0.5) |
| 28 | + temp -= zz |
| 29 | + ser = complex(1.000000000190015, 0) |
| 30 | + for j=1:6 |
| 31 | + y += 1.0 |
| 32 | + zz = clg_coeff[j]/y |
| 33 | + ser += zz |
| 34 | + end |
| 35 | + zz = sqrt2pi*ser / x |
| 36 | + return log(zz) - temp |
| 37 | +end |
| 38 | + |
| 39 | +function lgamma(z::Complex) |
| 40 | + if real(z) <= 0.5 |
| 41 | + a = clgamma_lanczos(1-z) |
| 42 | + b = log(sin(pi * z)) |
| 43 | + logpi = 1.14472988584940017 |
| 44 | + z = logpi - b - a |
| 45 | + else |
| 46 | + z = clgamma_lanczos(z) |
| 47 | + end |
| 48 | + complex(real(z), angle_restrict_symm(imag(z))) |
| 49 | +end |
| 50 | + |
| 51 | +beta(x::Number, w::Number) = exp(lgamma(x)+lgamma(w)-lgamma(x+w)) |
| 52 | + |
| 53 | +const eta_coeffs = |
| 54 | + [.99999999999999999997, |
| 55 | + -.99999999999999999821, |
| 56 | + .99999999999999994183, |
| 57 | + -.99999999999999875788, |
| 58 | + .99999999999998040668, |
| 59 | + -.99999999999975652196, |
| 60 | + .99999999999751767484, |
| 61 | + -.99999999997864739190, |
| 62 | + .99999999984183784058, |
| 63 | + -.99999999897537734890, |
| 64 | + .99999999412319859549, |
| 65 | + -.99999996986230482845, |
| 66 | + .99999986068828287678, |
| 67 | + -.99999941559419338151, |
| 68 | + .99999776238757525623, |
| 69 | + -.99999214148507363026, |
| 70 | + .99997457616475604912, |
| 71 | + -.99992394671207596228, |
| 72 | + .99978893483826239739, |
| 73 | + -.99945495809777621055, |
| 74 | + .99868681159465798081, |
| 75 | + -.99704078337369034566, |
| 76 | + .99374872693175507536, |
| 77 | + -.98759401271422391785, |
| 78 | + .97682326283354439220, |
| 79 | + -.95915923302922997013, |
| 80 | + .93198380256105393618, |
| 81 | + -.89273040299591077603, |
| 82 | + .83945793215750220154, |
| 83 | + -.77148960729470505477, |
| 84 | + .68992761745934847866, |
| 85 | + -.59784149990330073143, |
| 86 | + .50000000000000000000, |
| 87 | + -.40215850009669926857, |
| 88 | + .31007238254065152134, |
| 89 | + -.22851039270529494523, |
| 90 | + .16054206784249779846, |
| 91 | + -.10726959700408922397, |
| 92 | + .68016197438946063823e-1, |
| 93 | + -.40840766970770029873e-1, |
| 94 | + .23176737166455607805e-1, |
| 95 | + -.12405987285776082154e-1, |
| 96 | + .62512730682449246388e-2, |
| 97 | + -.29592166263096543401e-2, |
| 98 | + .13131884053420191908e-2, |
| 99 | + -.54504190222378945440e-3, |
| 100 | + .21106516173760261250e-3, |
| 101 | + -.76053287924037718971e-4, |
| 102 | + .25423835243950883896e-4, |
| 103 | + -.78585149263697370338e-5, |
| 104 | + .22376124247437700378e-5, |
| 105 | + -.58440580661848562719e-6, |
| 106 | + .13931171712321674741e-6, |
| 107 | + -.30137695171547022183e-7, |
| 108 | + .58768014045093054654e-8, |
| 109 | + -.10246226511017621219e-8, |
| 110 | + .15816215942184366772e-9, |
| 111 | + -.21352608103961806529e-10, |
| 112 | + .24823251635643084345e-11, |
| 113 | + -.24347803504257137241e-12, |
| 114 | + .19593322190397666205e-13, |
| 115 | + -.12421162189080181548e-14, |
| 116 | + .58167446553847312884e-16, |
| 117 | + -.17889335846010823161e-17, |
| 118 | + .27105054312137610850e-19] |
| 119 | + |
| 120 | +function eta(z) |
| 121 | + if z == 0 |
| 122 | + return complex(0.5) |
| 123 | + end |
| 124 | + re, im = reim(z) |
| 125 | + if im==0 && re < 0 && integer_valued(re) && re==round(re/2)*2 |
| 126 | + return complex(0.0) |
| 127 | + end |
| 128 | + reflect = false |
| 129 | + if re < 0.5 |
| 130 | + re = 1-re |
| 131 | + im = -im |
| 132 | + reflect = true |
| 133 | + end |
| 134 | + dn = float64(length(eta_coeffs)) |
| 135 | + sr = 0.0 |
| 136 | + si = 0.0 |
| 137 | + for n = length(eta_coeffs):-1:1 |
| 138 | + p = (dn^-re) * eta_coeffs[n] |
| 139 | + lnn = -im * log(dn) |
| 140 | + sr += p * cos(lnn) |
| 141 | + si += p * sin(lnn) |
| 142 | + dn -= 1 |
| 143 | + end |
| 144 | + if reflect |
| 145 | + z = complex(re, im) |
| 146 | + b = 2.0 - 2.0^complex(re+1,im) |
| 147 | + |
| 148 | + f = 2.0^z - 2 |
| 149 | + piz = pi^z |
| 150 | + |
| 151 | + b = b/f/piz |
| 152 | + |
| 153 | + return complex(sr,si) * exp(lgamma(z)) * b * cos(pi/2*z) |
| 154 | + end |
| 155 | + return complex(sr, si) |
| 156 | +end |
| 157 | + |
| 158 | +eta(x::Real) = real(eta(complex(float64(x)))) |
| 159 | + |
| 160 | +function zeta(z::Complex) |
| 161 | + zz = 2.0^z |
| 162 | + eta(z) * zz/(zz-2) |
| 163 | +end |
| 164 | + |
| 165 | +zeta(x::Real) = real(zeta(complex(float64(x)))) |
0 commit comments