-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathlinearcombination.jl
67 lines (65 loc) · 2.79 KB
/
linearcombination.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
using Test, LinearMaps, LinearAlgebra, BenchmarkTools
@testset "linear combinations" begin
CS! = LinearMap{ComplexF64}(cumsum!,
(y, x) -> (copyto!(y, x); reverse!(y); cumsum!(y, y)), 10;
ismutating=true)
v = rand(10)
u = similar(v)
b = @benchmarkable mul!($u, $CS!, $v)
@test run(b, samples=3).allocs == 0
n = 10
L = sum(fill(CS!, n))
@test mul!(u, L, v) ≈ n * cumsum(v)
b = @benchmarkable mul!($u, $L, $v)
@test run(b, samples=5).allocs <= 1
A = 2 * rand(ComplexF64, (10, 10)) .- 1
B = rand(ComplexF64, size(A)...)
M = @inferred LinearMap(A)
N = @inferred LinearMap(B)
LC = @inferred M + N
v = rand(ComplexF64, 10)
w = similar(v)
b = @benchmarkable mul!($w, $M, $v)
@test run(b, samples=3).allocs == 0
if VERSION >= v"1.3.0-alpha.115"
b = @benchmarkable mul!($w, $LC, $v)
@test run(b, samples=3).allocs == 0
for α in (false, true, rand(ComplexF64)), β in (false, true, rand(ComplexF64))
b = @benchmarkable mul!($w, $LC, $v, $α, $β)
@test run(b, samples=3).allocs == 0
b = @benchmarkable mul!($w, $(LC + I), $v, $α, $β)
@test run(b, samples=3).allocs == 0
y = rand(ComplexF64, size(v))
@test mul!(copy(y), LC, v, α, β) ≈ Matrix(LC)*v*α + y*β
@test mul!(copy(y), LC+I, v, α, β) ≈ Matrix(LC + I)*v*α + y*β
end
end
# @test_throws ErrorException LinearMaps.LinearCombination{ComplexF64}((M, N), (1, 2, 3))
@test @inferred size(3M + 2.0N) == size(A)
# addition
@test @inferred convert(Matrix, LC) == A + B
@test @inferred convert(Matrix, LC + LC) ≈ 2A + 2B
@test @inferred convert(Matrix, M + LC) ≈ 2A + B
@test @inferred convert(Matrix, M + M) ≈ 2A
# subtraction
@test (@inferred Matrix(LC - LC)) ≈ zeros(eltype(LC), size(LC)) atol=10eps()
@test (@inferred Matrix(LC - M)) ≈ B
@test (@inferred Matrix(N - LC)) ≈ -A
@test (@inferred Matrix(M - M)) ≈ zeros(size(M)) atol=10eps()
# scalar multiplication
@test @inferred Matrix(-M) == -A
@test @inferred Matrix(-LC) == -A - B
@test @inferred Matrix(3 * M) == 3 * A
@test @inferred Matrix(M * 3) == 3 * A
@test Matrix(3.0 * LC) ≈ Matrix(LC * 3) ≈ 3A + 3B
@test @inferred Matrix(3 \ M) ≈ A/3
@test @inferred Matrix(M / 3) ≈ A/3
@test @inferred Matrix(3 \ LC) ≈ (A + B) / 3
@test @inferred Matrix(LC / 3) ≈ (A + B) / 3
@test @inferred Array(3 * M' - CS!) == 3 * A' - Array(CS!)
@test (3M - 1im*CS!)' == (3M + ((-1im)*CS!))' == M'*3 + CS!'*1im
@test @inferred Array(M + A) == 2 * A
@test @inferred Array(A + M) == 2 * A
@test @inferred Array(M - A) == 0 * A
@test Array(A - M) == 0 * A
end