-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathfastaidatasets.jl
219 lines (204 loc) · 11.1 KB
/
fastaidatasets.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
struct FastAIDataset
name::Any
subfolder::Any
extension::Any
description::Any
checksum::Any
datadepname::Any
subpath::Any
size::Any
end
const ROOT_URL_FastAI = "https://s3.amazonaws.com/fast-ai-"
function FastAIDataset(name, subfolder, checksum = "";
extension = "tgz",
description = "",
datadepname = name,
subpath = name,
size = "???")
return FastAIDataset(name, subfolder, extension, description, checksum, datadepname,
subpath, size)
end
const DESCRIPTIONS = Dict(
"imagenette" => "A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute",
"imagewoof" => "A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog",
"food-101" => "101 food categories, with 101,000 images; 250 test images and 750 training images per class. The training images were not cleaned. All images were rescaled to have a maximum side length of 512 pixels.",
)
const DATASETCONFIGS = [
# imageclas
FastAIDataset("CUB_200_2011", "imageclas",
"0c685df5597a8b24909f6a7c9db6d11e008733779a671760afef78feb49bf081",
size = "1GiB"),
FastAIDataset("bedroom", "imageclas",
"7c95250ccb177c582f602c08f239c71f7a70512729d2e078925261cf5e349f5d",
size = "4.25GiB"),
FastAIDataset("caltech_101", "imageclas",
"af6ece2f339791ca20f855943d8b55dd60892c0a25105fcd631ee3d6430f9926",
size = "126MiB", subpath = "101_ObjectCategories"),
FastAIDataset("cifar10", "imageclas",
"637c5814e11aefcb6ee76d5f59c67ddc8de7f5b5077502a195b0833d1e3e4441"),
FastAIDataset("cifar100", "imageclas",
"085ac613ceb0b3659c8072143ae553d5dd146b3c4206c3672a56ed02d0e77d28"),
FastAIDataset("food-101", "imageclas",
"abc3d6b03a9886fdea6d2a124cf88e22a99dfdb03085b2478be97de3f8e4679f",
size = "5.3GB", description = DESCRIPTIONS["food-101"]),
FastAIDataset("imagenette-160", "imageclas",
"1bd650bc16884ca88e4f0f537ed8569b1f8d7ae865d37eba8ecdd87d9cd9dcfa",
size = "1.45GiB", description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette-320", "imageclas", description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette", "imageclas", description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette2-160", "imageclas",
"64d0c4859f35a461889e0147755a999a48b49bf38a7e0f9bd27003f10db02fe5",
description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette2-320", "imageclas",
"569b4497c98db6dd29f335d1f109cf315fe127053cedf69010d047f0188e158c",
description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette2", "imageclas",
"6cbfac238434d89fe99e651496f0812ebc7a10fa62bd42d6874042bf01de4efd",
description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagewang-160", "imageclas",
"a0d360f9d8159055b3bf2b8926a51d19b2f1ff98a1eef6034e4b891c59ca3f1a",
size = "182MiB"),
FastAIDataset("imagewang-320", "imageclas",
"fd53301c335aa46f0f4add68dd471cd0b8b66412382cc36f5f510d0a03fb4d9d",
size = "639MiB"),
FastAIDataset("imagewang", "imageclas"),
FastAIDataset("imagewoof-160", "imageclas",
"a0d360f9d8159055b3bf2b8926a51d19b2f1ff98a1eef6034e4b891c59ca3f1a",
description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof-320", "imageclas", description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof", "imageclas", description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof2-160", "imageclas",
"b5ffa16037e07f60882434f55b7814a3d44483f2a484129f251604bc0d0f8172",
description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof2-320", "imageclas",
"7db6120fdb9ae079e26346f89e7b00d7f184f8137791609b97fd0405d3f92305",
description = DESCRIPTIONS["imagewoof"], size = "313MB"),
FastAIDataset("imagewoof2", "imageclas",
"de3f58c4ea3e042cf3f8365fbc699288cfe1d8c151059040d181c221bd5a55b8",
description = DESCRIPTIONS["imagewoof"], size = "1.25GiB"),
FastAIDataset("mnist_png", "imageclas",
"9e18edaa3a08b065d8f80a019ca04329e6d9b3e391363414a9bd1ada30563672"),
FastAIDataset("mnist_var_size_tiny", "imageclas",
"8a0f6ca04c2d31810dc08e739c7fa9b612e236383f70dd9fc6e5a62e672e2283"),
FastAIDataset("oxford-102-flowers", "imageclas"),
FastAIDataset("oxford-iiit-pet", "imageclas"),
FastAIDataset("stanford-cars", "imageclas"),
# nlp
FastAIDataset("ag_news_csv", "nlp",
"9a8c300eabb45750237fcc669f61cb8a3448f3ef6f6098e1ce340e444f6872be",
size = "11MB"),
FastAIDataset("amazon_review_full_csv", "nlp",
"4af62eeee139d0142e0747340b68646d23483d9475c33ea0641ee9175b423443",
size = "600MB"),
FastAIDataset("amazon_review_polarity_csv", "nlp",
"d2a3ee7a214497a5d1b8eaed7c8d7ba2737de00ada3b0ec46243983efa100361",
size = "600MB"),
FastAIDataset("dbpedia_csv", "nlp",
"42db5221ddedddb673a4cabcc5f3a7d869714c878bcfe4ba94b29d14aa38e417",
size = "65MB"),
FastAIDataset("giga-fren", "nlp",
"11c97af99471fe641f210d8b86ccccf3b298b9199853987ee53892d709d7ca6b",
size = "2.4GB"),
FastAIDataset("imdb", "nlp",
"d501018afa17aee9fa1ebe8ac29859a5609980e13dc6e611aa21567cc357351f",
size = "140MB"),
FastAIDataset("sogou_news_csv", "nlp",
"6b77fc935561d339b82aa552d7e31ea59eff492a494920579b3ce70604efb5c2",
size = "360MB"),
FastAIDataset("wikitext-103", "nlp",
"27b89e94d98a9f9db74588a2e75b04378ee21569ce55d329d3e73e27d0952551",
size = "181MB"),
FastAIDataset("wikitext-2", "nlp",
"4e39df0e84453ae2f3d34333de2a9d8e57560a7a6e621f13e11dc21241320074",
size = "4MB"),
FastAIDataset("yahoo_answers_csv", "nlp",
"2d4277855faf8b35259009425fa8f7fe1888b5644b47165508942d000f4c96ae",
size = "305MB"),
FastAIDataset("yelp_review_full_csv", "nlp",
"56006b0a17a370f1e366504b1f2c3e3754e4a3dda17d3e718a885c552869a559",
size = "187MB"),
FastAIDataset("yelp_review_polarity_csv", "nlp",
"528f22e286cad085948acbc3bea7e58188416546b0e364d0ae4ca0ce666abe35",
size = "158MB"),
# imagelocal
FastAIDataset("biwi_head_pose", "imagelocal",
"9cfefd53ed85f824c5908bc6eb21fc719583eec57a7df1d8141d3156645693cf",
size = "430MiB"),
FastAIDataset("camvid", "imagelocal",
"11db05fc3ee727fb17de7499380b20258a41beeb1002a2aee2c2244a472a4a45",
size = "571MB"),
FastAIDataset("pascal-voc", "imagelocal",
"10fc13a659da20fdd8302dd394d88ca7e4e60e69fd8a5212c3e3357964a58215",
size = "4.3GB"),
FastAIDataset("pascal_2007", "imagelocal"),
FastAIDataset("pascal_2012", "imagelocal"),
FastAIDataset("siim_small", "imagelocal"),
FastAIDataset("skin-lesion", "imagelocal"),
FastAIDataset("tcga-small", "imagelocal"),
# sample
FastAIDataset("adult_sample", "sample",
"47ecd1848abc976643ee82d8788b712e3006d629bbc7554efa1077a91579e99e",
size = "3.8MB"),
FastAIDataset("biwi_sample", "sample"),
FastAIDataset("camvid_tiny", "sample",
"cd42a9bdd8ad3e0ce87179749beae05b4beb1ae6ab665841180b1d8022fc230b"),
FastAIDataset("dogscats", "sample",
"b79c0a5e4aa9ba7a0b83abbf61908c61e15bed0e5b236e86a0c4a080c8f70d7c",
size = "800MiB"),
FastAIDataset("human_numbers", "sample"),
FastAIDataset("imdb_sample", "sample",
"8e776d995296136b3f9a3cf001796d886cb0b60e86877ce71c7abbdc3c247341",
size = "4KB"),
FastAIDataset("mnist_sample", "sample",
"b373a14f282298aeba0f7dd56b7cdb6c2401063d4f118c39c54982907760bd38",
size = "3MB"),
FastAIDataset("mnist_tiny", "sample",
"0d1fedf86243931aa3fc065d2cf4ffab339a972958d8594ae993ee32bd8e15b9",
size = "300KB"),
FastAIDataset("movie_lens_sample", "sample"),
FastAIDataset("planet_sample", "sample",
"f2509212bb2dcdc147423b164564f2e63cae1d1db0b504166e5b92cfbcbb3b4c",
size = "14.8MB"),
FastAIDataset("planet_tiny", "sample",
"41a5fdd82db1c9fb2cff17e1a1270102414a25a34b21b770f953d28483961edb",
size = "1MB"),
# coco
FastAIDataset("coco_sample", "coco", "56960c0ac09ff35cd8588823d37e1ed0954cb88b8bfbd214a7763e72f982911c", size="3GB"),
FastAIDataset("train2017", "coco", datadepname="coco-train2017", extension="zip"),
FastAIDataset("val2017", "coco", datadepname="coco-val2017", extension="zip"),
FastAIDataset("test2017", "coco", datadepname="coco-test2017", extension="zip"),
FastAIDataset("unlabeled2017", "coco", datadepname="coco-unlabeled2017", extension="zip"),
FastAIDataset("image_info_test2017", "coco", datadepname="coco-image_info_test2017", extension="zip"),
FastAIDataset("image_info_unlabeled2017", "coco", datadepname="coco-image_info_unlabeled2017", extension="zip"),
FastAIDataset("annotations_trainval2017", "coco", datadepname="coco-annotations_trainval2017", extension="zip"),
FastAIDataset("stuff_annotations_trainval2017", "coco", datadepname="coco-stuff_annotations_trainval2017", extension="zip"),
FastAIDataset("panoptic_annotations_trainval2017", "coco", datadepname="coco-panoptic_annotations_trainval2017", extension="zip"),
]
"""
fastaidatasets()
List all available FastAI datasets.
"""
fastaidatasets() = [d.datadepname for d in DATASETCONFIGS]
function DataDeps.DataDep(d::FastAIDataset)
return DataDep("fastai-$(d.datadepname)",
"""
"$(d.name)" from the fastai dataset repository (https://course.fast.ai/datasets)
$(d.description)
Download size: $(d.size)
""",
"$(ROOT_URL_FastAI)$(d.subfolder)/$(d.name).$(d.extension)",
d.checksum,
post_fetch_method = f -> begin
DataDeps.unpack(f)
extracted = readdir(pwd())[1]
temp = mktempdir()
mv(extracted, temp, force=true)
mv(temp, pwd(), force=true)
end,
)
end
function __init__fastai_datasets()
for d in DATASETCONFIGS
DataDeps.register(DataDep(d))
end
end