-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmemorylayout.jl
744 lines (596 loc) · 33.6 KB
/
memorylayout.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
tuple_type_reverse(::Type{T}) where T<:Tuple = Tuple{reverse(tuple(T.parameters...))...}
tuple_type_reverse(::Type{Tuple{}}) = Tuple{}
tuple_type_reverse(::Type{Tuple{A}}) where A = Tuple{A}
tuple_type_reverse(::Type{Tuple{A,B}}) where {A,B} = Tuple{B,A}
abstract type MemoryLayout end
struct UnknownLayout <: MemoryLayout end
abstract type AbstractStridedLayout <: MemoryLayout end
abstract type AbstractIncreasingStrides <: AbstractStridedLayout end
abstract type AbstractColumnMajor <: AbstractIncreasingStrides end
struct DenseColumnMajor <: AbstractColumnMajor end
struct ColumnMajor <: AbstractColumnMajor end
struct IncreasingStrides <: AbstractIncreasingStrides end
abstract type AbstractDecreasingStrides <: AbstractStridedLayout end
abstract type AbstractRowMajor <: AbstractDecreasingStrides end
struct DenseRowMajor <: AbstractRowMajor end
struct RowMajor <: AbstractRowMajor end
struct DecreasingStrides <: AbstractIncreasingStrides end
struct UnitStride{D} <: AbstractStridedLayout end
struct StridedLayout <: AbstractStridedLayout end
struct ScalarLayout <: MemoryLayout end
"""
UnknownLayout()
is returned by `MemoryLayout(A)` if it is unknown how the entries of an array `A`
are stored in memory.
"""
UnknownLayout
"""
AbstractStridedLayout
is an abstract type whose subtypes are returned by `MemoryLayout(A)`
if an array `A` has storage laid out at regular offsets in memory,
and which can therefore be passed to external C and Fortran functions expecting
this memory layout.
Julia's internal linear algebra machinery will automatically (and invisibly)
dispatch to BLAS and LAPACK routines if the memory layout is BLAS compatible and
the element type is a `Float32`, `Float64`, `ComplexF32`, or `ComplexF64`.
In this case, one must implement the strided array interface, which requires
overrides of `strides(A::MyMatrix)` and `unknown_convert(::Type{Ptr{T}}, A::MyMatrix)`.
The complete list of more specialised types is as follows:
```
julia> using ArrayLayouts, AbstractTrees
julia> AbstractTrees.children(x::Type) = subtypes(x)
julia> print_tree(AbstractStridedLayout)
AbstractStridedLayout
├─ AbstractDecreasingStrides
│ └─ AbstractRowMajor
│ ├─ DenseRowMajor
│ └─ RowMajor
├─ AbstractIncreasingStrides
│ ├─ AbstractColumnMajor
│ │ ├─ ColumnMajor
│ │ └─ DenseColumnMajor
│ ├─ DecreasingStrides
│ └─ IncreasingStrides
├─ StridedLayout
└─ UnitStride
julia> Base.show_supertypes(AbstractStridedLayout)
AbstractStridedLayout <: MemoryLayout <: Any
```
"""
AbstractStridedLayout
"""
DenseColumnMajor()
is returned by `MemoryLayout(A)` if an array `A` has storage in memory
equivalent to an `Array`, so that `stride(A,1) == 1` and
`stride(A,i) ≡ size(A,i-1) * stride(A,i-1)` for `2 ≤ i ≤ ndims(A)`. In particular,
if `A` is a matrix then `strides(A) == `(1, size(A,1))`.
Arrays with `DenseColumnMajor` memory layout must conform to the `DenseArray` interface.
"""
DenseColumnMajor
"""
ColumnMajor()
is returned by `MemoryLayout(A)` if an array `A` has storage in memory
as a column major array, so that `stride(A,1) == 1` and
`stride(A,i) ≥ size(A,i-1) * stride(A,i-1)` for `2 ≤ i ≤ ndims(A)`.
Arrays with `ColumnMajor` memory layout must conform to the `DenseArray` interface.
"""
ColumnMajor
"""
IncreasingStrides()
is returned by `MemoryLayout(A)` if an array `A` has storage in memory
as a strided array with increasing strides, so that `stride(A,1) ≥ 1` and
`stride(A,i) ≥ size(A,i-1) * stride(A,i-1)` for `2 ≤ i ≤ ndims(A)`.
"""
IncreasingStrides
"""
DenseRowMajor()
is returned by `MemoryLayout(A)` if an array `A` has storage in memory
as a row major array with dense entries, so that `stride(A,ndims(A)) == 1` and
`stride(A,i) ≡ size(A,i+1) * stride(A,i+1)` for `1 ≤ i ≤ ndims(A)-1`. In particular,
if `A` is a matrix then `strides(A) == `(size(A,2), 1)`.
"""
DenseRowMajor
"""
RowMajor()
is returned by `MemoryLayout(A)` if an array `A` has storage in memory
as a row major array, so that `stride(A,ndims(A)) == 1` and
stride(A,i) ≥ size(A,i+1) * stride(A,i+1)` for `1 ≤ i ≤ ndims(A)-1`.
If `A` is a matrix with `RowMajor` memory layout, then
`transpose(A)` should return a matrix whose layout is `ColumnMajor`.
"""
RowMajor
"""
DecreasingStrides()
is returned by `MemoryLayout(A)` if an array `A` has storage in memory
as a strided array with decreasing strides, so that `stride(A,ndims(A)) ≥ 1` and
stride(A,i) ≥ size(A,i+1) * stride(A,i+1)` for `1 ≤ i ≤ ndims(A)-1`.
"""
DecreasingStrides
"""
StridedLayout()
is returned by `MemoryLayout(A)` if an array `A` has storage laid out at regular
offsets in memory. `Array`s with `StridedLayout` must conform to the `DenseArray` interface.
"""
StridedLayout
"""
ScalarLayout()
is returned by `MemoryLayout(A)` if A is a scalar, which does not live in memory
"""
ScalarLayout
"""
MemoryLayout(A)
specifies the layout in memory for an array `A`. When
you define a new `AbstractArray` type, you can choose to override
`MemoryLayout` to indicate how an array is stored in memory.
For example, if your matrix is column major with `stride(A,2) == size(A,1)`,
then override as follows:
MemoryLayout(::MyMatrix) = DenseColumnMajor()
The default is `UnknownLayout()` to indicate that the layout
in memory is unknown.
Julia's internal linear algebra machinery will automatically (and invisibly)
dispatch to BLAS and LAPACK routines if the memory layout is compatible.
"""
@inline MemoryLayout(A) = MemoryLayout(typeof(A))
@inline MemoryLayout(::Type) = UnknownLayout()
@inline MemoryLayout(::Type{<:Number}) = ScalarLayout()
@inline MemoryLayout(::Type{<:DenseArray}) = DenseColumnMajor()
@inline MemoryLayout(::Type{<:ReinterpretArray{T,N,S,P}}) where {T,N,S,P} = reinterpretedlayout(MemoryLayout(P))
@inline reinterpretedlayout(::MemoryLayout) = UnknownLayout()
@inline reinterpretedlayout(::DenseColumnMajor) = DenseColumnMajor()
MemoryLayout(::Type{<:ReshapedArray{T,N,A,DIMS}}) where {T,N,A,DIMS} = reshapedlayout(MemoryLayout(A), DIMS)
@inline reshapedlayout(_, _) = UnknownLayout()
@inline reshapedlayout(::DenseColumnMajor, _) = DenseColumnMajor()
@inline MemoryLayout(A::Type{<:SubArray{T,N,P,I}}) where {T,N,P,I} =
sublayout(MemoryLayout(P), I)
sublayout(_1, _2) = UnknownLayout()
sublayout(_1, _2, _3)= UnknownLayout()
sublayout(::DenseColumnMajor, ::Type{<:Tuple{<:Union{AbstractUnitRange{Int},Int,AbstractCartesianIndex}}}) =
DenseColumnMajor() # A[:] is DenseColumnMajor if A is DenseColumnMajor
sublayout(ml::AbstractColumnMajor, inds) = _column_sublayout1(ml, inds)
sublayout(::AbstractRowMajor, ::Type{<:Tuple{<:Any}}) =
UnknownLayout() # A[:] does not have any structure if A is AbstractRowMajor
sublayout(ml::AbstractRowMajor, inds) = _row_sublayout1(ml, tuple_type_reverse(inds))
sublayout(ml::AbstractStridedLayout, inds) = _strided_sublayout(ml, inds)
_column_sublayout1(::DenseColumnMajor, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:Union{Int,AbstractCartesianIndex} =
DenseColumnMajor() # view(A,1,1,2) is a scalar, which we include in DenseColumnMajor
_column_sublayout1(::DenseColumnMajor, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:Slice =
DenseColumnMajor() # view(A,:,1,2) is a DenseColumnMajor vector
_column_sublayout1(::DenseColumnMajor, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:AbstractUnitRange{Int} =
DenseColumnMajor() # view(A,1:3,1,2) is a DenseColumnMajor vector
_column_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:Union{Int,AbstractCartesianIndex} =
DenseColumnMajor() # view(A,1,1,2) is a scalar, which we include in DenseColumnMajor
_column_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:AbstractUnitRange{Int} =
DenseColumnMajor() # view(A,1:3,1,2) is a DenseColumnMajor vector
_column_sublayout1(::DenseColumnMajor, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:Slice =
_column_sublayout(DenseColumnMajor(), DenseColumnMajor(), tuple_type_tail(inds))
_column_sublayout1(par::DenseColumnMajor, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:AbstractUnitRange{Int} =
_column_sublayout(par, ColumnMajor(), tuple_type_tail(inds))
_column_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:AbstractUnitRange{Int} =
_column_sublayout(par, ColumnMajor(), tuple_type_tail(inds))
_column_sublayout1(par::DenseColumnMajor, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:Union{RangeIndex,AbstractCartesianIndex} =
_column_sublayout(par, StridedLayout(), tuple_type_tail(inds))
_column_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:Union{RangeIndex,AbstractCartesianIndex} =
_column_sublayout(par, StridedLayout(), tuple_type_tail(inds))
_column_sublayout1(par, inds) = UnknownLayout()
_column_sublayout(par, ret, ::Type{<:Tuple{}}) = ret
_column_sublayout(par, ret, ::Type{<:Tuple{I}}) where I = UnknownLayout()
_column_sublayout(::DenseColumnMajor, ::DenseColumnMajor, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:Union{AbstractUnitRange{Int},Int,AbstractCartesianIndex} =
DenseColumnMajor() # A[:,1:3,1,2] is DenseColumnMajor if A is DenseColumnMajor
_column_sublayout(par::DenseColumnMajor, ::DenseColumnMajor, inds::Type{<:Tuple{I, Vararg{Int}}}) where I<:Slice =
DenseColumnMajor()
_column_sublayout(par::DenseColumnMajor, ::DenseColumnMajor, inds::Type{<:Tuple{I, Vararg{Any}}}) where I<:Slice =
_column_sublayout(par, DenseColumnMajor(), tuple_type_tail(inds))
_column_sublayout(par, ::AbstractColumnMajor, inds::Type{<:Tuple{I, Vararg{Any}}}) where I<:Union{AbstractUnitRange{Int},Int,AbstractCartesianIndex} =
_column_sublayout(par, ColumnMajor(), tuple_type_tail(inds))
_column_sublayout(par, ::AbstractStridedLayout, inds::Type{<:Tuple{I, Vararg{Any}}}) where I<:Union{RangeIndex,AbstractCartesianIndex} =
_column_sublayout(par, StridedLayout(), tuple_type_tail(inds))
_row_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:Union{Int,AbstractCartesianIndex} =
DenseColumnMajor() # view(A,1,1,2) is a scalar, which we include in DenseColumnMajor
_row_sublayout1(::DenseRowMajor, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:Slice =
DenseColumnMajor() # view(A,1,2,:) is a DenseColumnMajor vector
_row_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:AbstractUnitRange{Int} =
DenseColumnMajor() # view(A,1,2,1:3) is a DenseColumnMajor vector
_row_sublayout1(::DenseRowMajor, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:Slice =
_row_sublayout(DenseRowMajor(), DenseRowMajor(), tuple_type_tail(inds))
_row_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:AbstractUnitRange{Int} =
_row_sublayout(par, RowMajor(), tuple_type_tail(inds))
_row_sublayout1(par, inds::Type{<:Tuple{I,Vararg{Any}}}) where I<:Union{RangeIndex,AbstractCartesianIndex} =
_row_sublayout(par, StridedLayout(), tuple_type_tail(inds))
_row_sublayout1(par, inds) = UnknownLayout()
_row_sublayout(par, ret, ::Type{<:Tuple{}}) = ret
_row_sublayout(par, ret, ::Type{<:Tuple{I}}) where I = UnknownLayout()
_row_sublayout(::DenseRowMajor, ::DenseRowMajor, inds::Type{<:Tuple{I,Vararg{Int}}}) where I<:Union{AbstractUnitRange{Int},Int,AbstractCartesianIndex} =
DenseRowMajor() # A[1,2,1:3,:] is DenseRowMajor if A is DenseRowMajor
_row_sublayout(par::DenseRowMajor, ::DenseRowMajor, inds::Type{<:Tuple{I, Vararg{Int}}}) where I<:Slice =
DenseRowMajor()
_row_sublayout(par::DenseRowMajor, ::DenseRowMajor, inds::Type{<:Tuple{I, Vararg{Any}}}) where I<:Slice =
_row_sublayout(par, DenseRowMajor(), tuple_type_tail(inds))
_row_sublayout(par::AbstractRowMajor, ::AbstractRowMajor, inds::Type{<:Tuple{I, Vararg{Any}}}) where I<:Union{AbstractUnitRange{Int},Int,AbstractCartesianIndex} =
_row_sublayout(par, RowMajor(), tuple_type_tail(inds))
_row_sublayout(par::AbstractRowMajor, ::AbstractStridedLayout, inds::Type{<:Tuple{I, Vararg{Any}}}) where I<:Union{RangeIndex,AbstractCartesianIndex} =
_row_sublayout(par, StridedLayout(), tuple_type_tail(inds))
_strided_sublayout(par, inds) = UnknownLayout()
_strided_sublayout(par, ::Type{<:Tuple{}}) = StridedLayout()
_strided_sublayout(par, inds::Type{<:Tuple{I, Vararg{Any}}}) where I<:Union{RangeIndex,AbstractCartesianIndex} =
_strided_sublayout(par, tuple_type_tail(inds))
# MemoryLayout of transposed and adjoint matrices
struct ConjLayout{ML<:MemoryLayout} <: MemoryLayout end
conjlayout(_1, _2) = UnknownLayout()
conjlayout(::Type{<:Complex}, ::ConjLayout{ML}) where ML = ML()
conjlayout(::Type{<:Complex}, ::ML) where ML<:AbstractStridedLayout = ConjLayout{ML}()
conjlayout(::Type{<:Real}, M::MemoryLayout) = M
sublayout(::ConjLayout{ML}, t::Type{<:Tuple}) where ML = ConjLayout{typeof(sublayout(ML(), t))}()
"""
DualLayout{ML<:MemoryLayout}()
represents a row-vector that should behave like a dual-vector, that is
multiplication times a column-vector returns a scalar.
"""
struct DualLayout{ML<:MemoryLayout} <: MemoryLayout end
MemoryLayout(::Type{Transpose{T,P}}) where {T,P} = transposelayout(MemoryLayout(P))
MemoryLayout(::Type{Adjoint{T,P}}) where {T,P} = adjointlayout(T, MemoryLayout(P))
MemoryLayout(::Type{AdjointAbsVec{T,P}}) where {T,P<:AbstractVector} = DualLayout{typeof(adjointlayout(T,MemoryLayout(P)))}()
MemoryLayout(::Type{TransposeAbsVec{T,P}}) where {T,P<:AbstractVector} = DualLayout{typeof(transposelayout(MemoryLayout(P)))}()
if isdefined(LinearAlgebra, :AdjointQ)
MemoryLayout(::Type{LinearAlgebra.AdjointQ{T,P}}) where {T,P} = adjointlayout(T, MemoryLayout(P))
end
transposelayout(_) = UnknownLayout()
transposelayout(::StridedLayout) = StridedLayout()
transposelayout(::ColumnMajor) = RowMajor()
transposelayout(::RowMajor) = ColumnMajor()
transposelayout(::DenseColumnMajor) = DenseRowMajor()
transposelayout(::DenseRowMajor) = DenseColumnMajor()
transposelayout(::ConjLayout{ML}) where ML = ConjLayout{typeof(transposelayout(ML()))}()
adjointlayout(::Type{T}, ::DualLayout{ML}) where {T,ML} = adjointlayout(T, ML())
adjointlayout(::Type{T}, M::MemoryLayout) where T = transposelayout(conjlayout(T, M))
sublayout(::DualLayout{ML}, ::Type{<:Tuple{KR,JR}}) where {ML,KR<:Slice,JR} = DualLayout{typeof(sublayout(ML(),Tuple{KR,JR}))}()
sublayout(::DualLayout{ML}, INDS::Type) where ML = sublayout(ML(), INDS)
# try to maintain "type" of parent ie adjoint/transpose when materialising, even though layouts are equivalent
# to preserve special overloads
_dual_adjoint(a::SubArray{<:Any, 2, <:Any, <:Tuple{Slice,Any}}) = view(parent(a)', parentindices(a)[2])
_dual_transpose(a::SubArray{<:Any, 2, <:Any, <:Tuple{Slice,Any}}) = view(transpose(parent(a)), parentindices(a)[2])
sub_materialize(::DualLayout{ML}, A::AbstractMatrix{<:Real}) where ML = sub_materialize(adjointlayout(eltype(A), ML()), _dual_adjoint(A))'
sub_materialize(::DualLayout{ML}, A::AbstractMatrix) where ML<:ConjLayout = sub_materialize(adjointlayout(eltype(A), ML()), _dual_adjoint(A))'
sub_materialize(::DualLayout{ML}, A::AbstractMatrix) where ML = transpose(sub_materialize(transposelayout(ML()), _dual_transpose(A)))
copyto!_layout(dlay, ::DualLayout{ML}, dest::AbstractArray{T,N}, src::AbstractArray{V,N}) where {T,V,N,ML} =
copyto!_layout(dlay, ML(), dest, src)
# Layouts of PermutedDimsArrays
"""
UnitStride{D}()
is returned by `MemoryLayout(A)` for arrays of `ndims(A) >= 3` which have `stride(A,D) == 1`.
`UnitStride{1}` is weaker than `ColumnMajor` in that it does not demand that the other
strides are increasing, hence it is not a subtype of `AbstractIncreasingStrides`.
To ensure that `stride(A,1) == 1`, you may dispatch on `Union{UnitStride{1}, AbstractColumnMajor}`
to allow for both options. (With complex numbers, you may also need their `ConjLayout` versions.)
Likewise, both `UnitStride{ndims(A)}` and `AbstractRowMajor` have `stride(A, ndims(A)) == 1`.
"""
UnitStride
MemoryLayout(::Type{PermutedDimsArray{T,N,P,Q,S}}) where {T,N,P,Q,S} = permutelayout(MemoryLayout(S), Val(P))
permutelayout(::Any, perm) = UnknownLayout()
permutelayout(::StridedLayout, perm) = StridedLayout()
permutelayout(::ConjLayout{ML}, perm) where ML = ConjLayout{typeof(permutelayout(ML(), perm))}()
function permutelayout(layout::AbstractColumnMajor, ::Val{perm}) where {perm}
issorted(perm) && return layout
issorted(reverse(perm)) && return reverse(layout)
D = sum(ntuple(dim -> perm[dim] == 1 ? dim : 0, length(perm)))
return UnitStride{D}()
end
function permutelayout(layout::AbstractRowMajor, ::Val{perm}) where {perm}
issorted(perm) && return layout
issorted(reverse(perm)) && return reverse(layout)
N = length(perm) # == ndims(A)
D = sum(ntuple(dim -> perm[dim] == N ? dim : 0, N))
return UnitStride{D}()
end
function permutelayout(layout::UnitStride{D0}, ::Val{perm}) where {D0, perm}
D = sum(ntuple(dim -> perm[dim] == D0 ? dim : 0, length(perm)))
return UnitStride{D}()
end
function permutelayout(layout::Union{IncreasingStrides,DecreasingStrides}, ::Val{perm}) where {perm}
issorted(perm) && return layout
issorted(reverse(perm)) && return reverse(layout)
return StridedLayout()
end
reverse(::DenseRowMajor) = DenseColumnMajor()
reverse(::RowMajor) = ColumnMajor()
reverse(::DenseColumnMajor) = DenseRowMajor()
reverse(::ColumnMajor) = RowMajor()
reverse(::IncreasingStrides) = DecreasingStrides()
reverse(::DecreasingStrides) = IncreasingStrides()
reverse(::AbstractStridedLayout) = StridedLayout()
# MemoryLayout of Symmetric/Hermitian
"""
SymmetricLayout{layout}()
is returned by `MemoryLayout(A)` if a matrix `A` has storage in memory
as a symmetrized version of `layout`, where the entries used are dictated by the
`uplo`, which can be `'U'` or `L'`.
A matrix that has memory layout `SymmetricLayout(layout, uplo)` must overrided
`symmetricdata(A)` to return a matrix `B` such that `MemoryLayout(B) == layout` and
`A[k,j] == B[k,j]` for `j ≥ k` if `uplo == 'U'` (`j ≤ k` if `uplo == 'L'`) and
`A[k,j] == B[j,k]` for `j < k` if `uplo == 'U'` (`j > k` if `uplo == 'L'`).
"""
struct SymmetricLayout{ML<:MemoryLayout} <: MemoryLayout end
"""
HermitianLayout(layout, uplo)
is returned by `MemoryLayout(A)` if a matrix `A` has storage in memory
as a hermitianized version of `layout`, where the entries used are dictated by the
`uplo`, which can be `'U'` or `L'`.
A matrix that has memory layout `HermitianLayout(layout, uplo)` must overrided
`hermitiandata(A)` to return a matrix `B` such that `MemoryLayout(B) == layout` and
`A[k,j] == B[k,j]` for `j ≥ k` if `uplo == 'U'` (`j ≤ k` if `uplo == 'L'`) and
`A[k,j] == conj(B[j,k])` for `j < k` if `uplo == 'U'` (`j > k` if `uplo == 'L'`).
"""
struct HermitianLayout{ML<:MemoryLayout} <: MemoryLayout end
MemoryLayout(::Type{Hermitian{T,P}}) where {T,P} = hermitianlayout(T, MemoryLayout(P))
MemoryLayout(::Type{Symmetric{T,P}}) where {T,P} = symmetriclayout(MemoryLayout(P))
hermitianlayout(_1, _2) = UnknownLayout()
hermitianlayout(::Type{<:Complex}, ::ML) where ML<:AbstractColumnMajor = HermitianLayout{ML}()
hermitianlayout(::Type{<:Real}, ::ML) where ML<:AbstractColumnMajor = SymmetricLayout{ML}()
hermitianlayout(::Type{<:Complex}, ::ML) where ML<:AbstractRowMajor = HermitianLayout{ML}()
hermitianlayout(::Type{<:Real}, ::ML) where ML<:AbstractRowMajor = SymmetricLayout{ML}()
symmetriclayout(_1) = UnknownLayout()
symmetriclayout(::ML) where ML<:AbstractColumnMajor = SymmetricLayout{ML}()
symmetriclayout(::ML) where ML<:AbstractRowMajor = SymmetricLayout{ML}()
transposelayout(S::SymmetricLayout) = S
adjointlayout(::Type{T}, S::SymmetricLayout) where T<:Real = S
adjointlayout(::Type{T}, S::HermitianLayout) where T = S
sublayout(S::SymmetricLayout, ::Type{<:Tuple{<:Slice,<:Slice}}) = S
sublayout(S::HermitianLayout, ::Type{<:Tuple{<:Slice,<:Slice}}) = S
symmetricdata(A::Symmetric) = A.data
symmetricdata(A::Hermitian{<:Real}) = A.data
symmetricdata(V::SubArray{<:Any, 2, <:Any, <:Tuple{<:Slice,<:Slice}}) = symmetricdata(parent(V))
symmetricdata(V::Adjoint{<:Real}) = symmetricdata(parent(V))
symmetricdata(V::Transpose) = symmetricdata(parent(V))
hermitiandata(A::Hermitian) = A.data
hermitiandata(V::SubArray{<:Any, 2, <:Any, <:Tuple{<:Slice,<:Slice}}) = hermitiandata(parent(V))
hermitiandata(V::Adjoint) = hermitiandata(parent(V))
hermitiandata(V::Transpose{<:Real}) = hermitiandata(parent(V))
symmetricuplo(A::Symmetric) = A.uplo
symmetricuplo(A::Hermitian) = A.uplo
symmetricuplo(A::Adjoint) = symmetricuplo(parent(A))
symmetricuplo(A::Transpose) = A.uplo
symmetricuplo(A::SubArray{<:Any, 2, <:Any, <:Tuple{<:Slice,<:Slice}}) = symmetricuplo(parent(A))
# MemoryLayout of triangular matrices
struct TriangularLayout{UPLO,UNIT,ML} <: MemoryLayout end
"""
LowerTriangularLayout(layout)
is returned by `MemoryLayout(A)` if a matrix `A` has storage in memory
equivalent to a `LowerTriangular(B)` where `B` satisfies `MemoryLayout(B) == layout`.
A matrix that has memory layout `LowerTriangularLayout(layout)` must overrided
`triangulardata(A)` to return a matrix `B` such that `MemoryLayout(B) == layout` and
`A[k,j] ≡ zero(eltype(A))` for `j > k` and
`A[k,j] ≡ B[k,j]` for `j ≤ k`.
Moreover, `transpose(A)` and `adjoint(A)` must return a matrix that has memory
layout `UpperTriangularLayout`.
"""
const LowerTriangularLayout{ML} = TriangularLayout{'L','N',ML}
"""
UnitLowerTriangularLayout(ML::MemoryLayout)
is returned by `MemoryLayout(A)` if a matrix `A` has storage in memory
equivalent to a `UnitLowerTriangular(B)` where `B` satisfies `MemoryLayout(B) == layout`.
A matrix that has memory layout `UnitLowerTriangularLayout(layout)` must overrided
`triangulardata(A)` to return a matrix `B` such that `MemoryLayout(B) == layout` and
`A[k,j] ≡ zero(eltype(A))` for `j > k`,
`A[k,j] ≡ one(eltype(A))` for `j == k`,
`A[k,j] ≡ B[k,j]` for `j < k`.
Moreover, `transpose(A)` and `adjoint(A)` must return a matrix that has memory
layout `UnitUpperTriangularLayout`.
"""
const UnitLowerTriangularLayout{ML} = TriangularLayout{'L','U',ML}
"""
UpperTriangularLayout(ML::MemoryLayout)
is returned by `MemoryLayout(A)` if a matrix `A` has storage in memory
equivalent to a `UpperTriangularLayout(B)` where `B` satisfies `MemoryLayout(B) == ML`.
A matrix that has memory layout `UpperTriangularLayout(layout)` must overrided
`triangulardata(A)` to return a matrix `B` such that `MemoryLayout(B) == layout` and
`A[k,j] ≡ B[k,j]` for `j ≥ k` and
`A[k,j] ≡ zero(eltype(A))` for `j < k`.
Moreover, `transpose(A)` and `adjoint(A)` must return a matrix that has memory
layout `LowerTriangularLayout`.
"""
const UpperTriangularLayout{ML} = TriangularLayout{'U','N',ML}
"""
UnitUpperTriangularLayout(ML::MemoryLayout)
is returned by `MemoryLayout(A)` if a matrix `A` has storage in memory
equivalent to a `UpperTriangularLayout(B)` where `B` satisfies `MemoryLayout(B) == ML`.
A matrix that has memory layout `UnitUpperTriangularLayout(layout)` must overrided
`triangulardata(A)` to return a matrix `B` such that `MemoryLayout(B) == layout` and
`A[k,j] ≡ B[k,j]` for `j > k`,
`A[k,j] ≡ one(eltype(A))` for `j == k`,
`A[k,j] ≡ zero(eltype(A))` for `j < k`.
Moreover, `transpose(A)` and `adjoint(A)` must return a matrix that has memory
layout `UnitLowerTriangularLayout`.
"""
const UnitUpperTriangularLayout{ML} = TriangularLayout{'U','U',ML}
MemoryLayout(A::Type{UpperTriangular{T,P}}) where {T,P} = triangularlayout(UpperTriangularLayout, MemoryLayout(P))
MemoryLayout(A::Type{UnitUpperTriangular{T,P}}) where {T,P} = triangularlayout(UnitUpperTriangularLayout, MemoryLayout(P))
MemoryLayout(A::Type{LowerTriangular{T,P}}) where {T,P} = triangularlayout(LowerTriangularLayout, MemoryLayout(P))
MemoryLayout(A::Type{UnitLowerTriangular{T,P}}) where {T,P} = triangularlayout(UnitLowerTriangularLayout, MemoryLayout(P))
triangularlayout(::Type{Tri}, ::MemoryLayout) where Tri = Tri{UnknownLayout}()
triangularlayout(::Type{Tri}, ::ML) where {Tri, ML<:AbstractColumnMajor} = Tri{ML}()
triangularlayout(::Type{Tri}, ::ML) where {Tri, ML<:AbstractRowMajor} = Tri{ML}()
triangularlayout(::Type{Tri}, ::ML) where {Tri, ML<:ConjLayout{<:AbstractRowMajor}} = Tri{ML}()
sublayout(layout::TriangularLayout, ::Type{<:Tuple{<:Union{Slice,OneTo},<:Union{Slice,OneTo}}}) = layout
conjlayout(::Type{<:Complex}, ::TriangularLayout{UPLO,UNIT,ML}) where {UPLO,UNIT,ML} =
TriangularLayout{UPLO,UNIT,ConjLayout{ML}}()
for (TriLayout, TriLayoutTrans) in ((UpperTriangularLayout, LowerTriangularLayout),
(UnitUpperTriangularLayout, UnitLowerTriangularLayout),
(LowerTriangularLayout, UpperTriangularLayout),
(UnitLowerTriangularLayout, UnitUpperTriangularLayout))
@eval transposelayout(::$TriLayout{ML}) where ML = $TriLayoutTrans{typeof(transposelayout(ML()))}()
end
triangulardata(A::AbstractTriangular) = parent(A)
triangulardata(A::Adjoint) = Adjoint(triangulardata(parent(A)))
triangulardata(A::Transpose) = Transpose(triangulardata(parent(A)))
triangulardata(A::SubArray{<:Any,2,<:Any,<:Tuple{<:Union{Slice,OneTo},<:Union{Slice,OneTo}}}) =
view(triangulardata(parent(A)), parentindices(A)...)
###
# Fill
####
abstract type AbstractFillLayout <: MemoryLayout end
struct FillLayout <: AbstractFillLayout end
struct ZerosLayout <: AbstractFillLayout end
struct OnesLayout <: AbstractFillLayout end
struct EyeLayout <: MemoryLayout end
MemoryLayout(::Type{<:AbstractFill}) = FillLayout()
MemoryLayout(::Type{<:Zeros}) = ZerosLayout()
MemoryLayout(::Type{<:Ones}) = OnesLayout()
# all sub arrays are same
sublayout(L::AbstractFillLayout, inds::Type) = L
reshapedlayout(L::AbstractFillLayout, _) = L
adjointlayout(::Type, L::AbstractFillLayout) = L
transposelayout(L::AbstractFillLayout) = L
copyto!_layout(_, ::AbstractFillLayout, dest::AbstractArray{<:Any,N}, src::AbstractArray{<:Any,N}) where N =
fill!(dest, getindex_value(src))
sub_materialize(::AbstractFillLayout, V, ax) = Fill(getindex_value(V), ax)
sub_materialize(::ZerosLayout, V, ax) = Zeros{eltype(V)}(ax)
sub_materialize(::OnesLayout, V, ax) = Ones{eltype(V)}(ax)
abstract type AbstractBandedLayout <: MemoryLayout end
abstract type AbstractTridiagonalLayout <: AbstractBandedLayout end
struct DiagonalLayout{ML} <: AbstractBandedLayout end
struct BidiagonalLayout{DV,EV} <: AbstractBandedLayout end
struct SymTridiagonalLayout{DV,EV} <: AbstractTridiagonalLayout end
struct TridiagonalLayout{DL,D,DU} <: AbstractTridiagonalLayout end
bidiagonallayout(dv, ev) = BidiagonalLayout{UnknownLayout,UnknownLayout}()
tridiagonallayout(dl, d, du) = TridiagonalLayout{UnknownLayout,UnknownLayout,UnknownLayout}()
symtridiagonallayout(d, ev) = SymTridiagonalLayout{UnknownLayout,UnknownLayout}()
bidiagonallayout(d) = bidiagonallayout(d, d)
tridiagonallayout(d) = tridiagonallayout(d,d,d)
symtridiagonallayout(d) = symtridiagonallayout(d,d)
diagonallayout(_) = DiagonalLayout{UnknownLayout}()
diagonal(d::AbstractVector) = Diagonal(d) # support non-array diagonal objects like QuasiDiagonal
diagonallayout(::Lay) where Lay<:Union{AbstractStridedLayout, AbstractFillLayout} = DiagonalLayout{Lay}()
bidiagonallayout(::Lay, ::Lay) where Lay<:Union{AbstractStridedLayout, AbstractFillLayout} = BidiagonalLayout{Lay,Lay}()
tridiagonallayout(::Lay, ::Lay, ::Lay) where Lay<:Union{AbstractStridedLayout, AbstractFillLayout} = TridiagonalLayout{Lay,Lay,Lay}()
symtridiagonallayout(::Lay, ::Lay) where Lay<:Union{AbstractStridedLayout, AbstractFillLayout} = SymTridiagonalLayout{Lay,Lay}()
MemoryLayout(D::Type{Diagonal{T,P}}) where {T,P} = diagonallayout(MemoryLayout(P))
MemoryLayout(::Type{Bidiagonal{T,V}}) where {T,V} = bidiagonallayout(MemoryLayout(V))
MemoryLayout(::Type{SymTridiagonal{T,P}}) where {T,P} = symtridiagonallayout(MemoryLayout(P))
MemoryLayout(::Type{Tridiagonal{T,P}}) where {T,P} = tridiagonallayout(MemoryLayout(P))
bidiagonaluplo(A::Bidiagonal) = A.uplo
bidiagonaluplo(A::AdjOrTrans) = bidiagonaluplo(parent(A)) == 'L' ? 'U' : 'L'
diagonaldata(D::Diagonal) = parent(D)
diagonaldata(D::Bidiagonal) = D.dv
diagonaldata(D::SymTridiagonal) = D.dv
diagonaldata(D::Tridiagonal) = D.d
supdiagonaldata(D::Bidiagonal) = D.uplo == 'U' ? D.ev : throw(ArgumentError(LazyString(D, " is lower-bidiagonal")))
subdiagonaldata(D::Bidiagonal) = D.uplo == 'L' ? D.ev : throw(ArgumentError(LazyString(D, " is upper-bidiagonal")))
supdiagonaldata(D::SymTridiagonal) = D.ev
subdiagonaldata(D::SymTridiagonal) = D.ev
subdiagonaldata(D::Tridiagonal) = D.dl
supdiagonaldata(D::Tridiagonal) = D.du
transposelayout(ml::DiagonalLayout) = ml
transposelayout(ml::BidiagonalLayout) = ml
transposelayout(ml::SymTridiagonalLayout) = ml
transposelayout(ml::TridiagonalLayout) = ml
transposelayout(ml::ConjLayout{DiagonalLayout}) = ml
triangularlayout(::Type{<:TriangularLayout{'L','N'}}, ::TridiagonalLayout{DL,D,DU}) where {DL,D,DU} = BidiagonalLayout{D,DL}()
triangularlayout(::Type{<:TriangularLayout{'U','N'}}, ::TridiagonalLayout{DL,D,DU}) where {DL,D,DU} = BidiagonalLayout{D,DU}()
triangularlayout(::Type{<:TriangularLayout{'L','N'}}, ::TridiagonalLayout{FillLayout,FillLayout,FillLayout}) = BidiagonalLayout{FillLayout,FillLayout}()
triangularlayout(::Type{<:TriangularLayout{'U','N'}}, ::TridiagonalLayout{FillLayout,FillLayout,FillLayout}) = BidiagonalLayout{FillLayout,FillLayout}()
triangularlayout(::Type{<:TriangularLayout{UPLO,'U'}}, ::TridiagonalLayout{FillLayout,FillLayout,FillLayout}) where UPLO = BidiagonalLayout{FillLayout,FillLayout}()
bidiagonaluplo(::Union{UpperTriangular,UnitUpperTriangular}) = 'U'
bidiagonaluplo(::Union{LowerTriangular,UnitLowerTriangular}) = 'L'
diagonaldata(U::Union{UnitUpperTriangular{T},UnitLowerTriangular{T}}) where T = Ones{T}(size(U,1))
diagonaldata(U::Union{UpperTriangular{T},LowerTriangular{T}}) where T = diagonaldata(triangulardata(U))
supdiagonaldata(U::Union{UnitUpperTriangular,UpperTriangular}) = supdiagonaldata(triangulardata(U))
subdiagonaldata(U::Union{UnitLowerTriangular,LowerTriangular}) = subdiagonaldata(triangulardata(U))
adjointlayout(::Type{<:Real}, ml::SymTridiagonalLayout) = ml
adjointlayout(::Type{<:Real}, ::TridiagonalLayout{DL,D,DU}) where {DL,D,DU} = TridiagonalLayout{DU,D,DL}()
adjointlayout(::Type{<:Real}, ml::BidiagonalLayout) = ml
symmetriclayout(B::BidiagonalLayout{DV,EV}) where {DV,EV} = SymTridiagonalLayout{DV,EV}()
hermitianlayout(::Type{<:Real}, B::BidiagonalLayout{DV,EV}) where {DV,EV} = SymTridiagonalLayout{DV,EV}()
hermitianlayout(_, B::BidiagonalLayout) = HermitianLayout{typeof(B)}()
diagonaldata(D::Transpose) = diagonaldata(parent(D))
subdiagonaldata(D::Transpose) = supdiagonaldata(parent(D))
supdiagonaldata(D::Transpose) = subdiagonaldata(parent(D))
diagonaldata(D::Adjoint{<:Real}) = diagonaldata(parent(D))
subdiagonaldata(D::Adjoint{<:Real}) = supdiagonaldata(parent(D))
supdiagonaldata(D::Adjoint{<:Real}) = subdiagonaldata(parent(D))
diagonaldata(S::HermOrSym) = diagonaldata(parent(S))
subdiagonaldata(S::HermOrSym) = symmetricuplo(S) == 'L' ? subdiagonaldata(parent(S)) : supdiagonaldata(parent(S))
supdiagonaldata(S::HermOrSym) = symmetricuplo(S) == 'L' ? subdiagonaldata(parent(S)) : supdiagonaldata(parent(S))
rowsupport(_, A, k) = axes(A,2)
"""
rowsupport(A, k)
Return an iterator containing the column indices of the possible non-zero entries in the `k`-th row of `A`.
"""
rowsupport(A, k) = rowsupport(MemoryLayout(A), A, k)
"""
rowsupport(A)
Return an iterator containing the column indices of the possible non-zero entries in `A`.
"""
rowsupport(A) = rowsupport(A, axes(A,1))
colsupport(_, A, j) = axes(A,1)
"""
colsupport(A, j)
Return an iterator containing the row indices of the possible non-zero entries in the `j`-th column of `A`.
"""
colsupport(A, j) = colsupport(MemoryLayout(A), A, j)
"""
colsupport(A)
Return an iterator containing the row indices of the possible non-zero entries in `A`.
"""
colsupport(A) = colsupport(A, axes(A,2))
# TODO: generalise to other subarrays
function colsupport(A::SubArray{<:Any,N,<:Any,<:Tuple{Slice,AbstractVector}}, j) where N
_, jr = parentindices(A)
colsupport(parent(A), jr[j])
end
rowsupport(::ZerosLayout, A, _) = 1:0
colsupport(::ZerosLayout, A, _) = 1:0
colsupport(::UnknownLayout, A::OneElement{<:Any,1}, _) =
intersect(axes(A,1), A.ind[1]:A.ind[1])
function colsupport(::UnknownLayout, A::OneElement{<:Any,2}, j)
intersect(axes(A,1), range(A.ind[1], length = Int(A.ind[2] ∈ j)))
end
function rowsupport(::UnknownLayout, A::OneElement{<:Any,2}, k)
intersect(axes(A,2), range(A.ind[2], length = Int(A.ind[1] ∈ k)))
end
rowsupport(::DiagonalLayout, _, k) = k
colsupport(::DiagonalLayout, _, j) = j
function colsupport(::BidiagonalLayout, A, j)
isempty(j) && return 1:0
bidiagonaluplo(A) == 'L' ? (minimum(j):min(size(A,1),maximum(j)+1)) : (max(minimum(j)-1,1):maximum(j))
end
function rowsupport(::BidiagonalLayout, A, j)
isempty(j) && return 1:0
bidiagonaluplo(A) == 'U' ? (minimum(j):min(size(A,2),maximum(j)+1)) : (max(minimum(j)-1,1):maximum(j))
end
function colsupport(::AbstractTridiagonalLayout, A, j)
isempty(j) && return 1:0
max(minimum(j)-1,1):min(size(A,1),maximum(j)+1)
end
function rowsupport(::AbstractTridiagonalLayout, A, j)
isempty(j) && return 1:0
max(minimum(j)-1,1):min(size(A,2),maximum(j)+1)
end
function colsupport(::SymmetricLayout, A, j)
if symmetricuplo(A) == 'U'
first(colsupport(symmetricdata(A),j)):last(rowsupport(symmetricdata(A),j))
else
first(rowsupport(symmetricdata(A),j)):last(colsupport(symmetricdata(A),j))
end
end
function colsupport(::HermitianLayout, A, j)
if symmetricuplo(A) == 'U'
first(colsupport(hermitiandata(A),j)):last(rowsupport(hermitiandata(A),j))
else
first(rowsupport(hermitiandata(A),j)):last(colsupport(hermitiandata(A),j))
end
end
rowsupport(::Union{SymmetricLayout,HermitianLayout}, A, j) = colsupport(A, j)
function _sym_axes(A)
ax = axes(parent(A),2)
(ax, ax)
end
###
# axes overloads to support block indexing
###
axes(A::HermOrSym{<:Any,<:LayoutMatrix}) = _sym_axes(A)
axes(A::HermOrSym{<:Any,<:SubArray{<:Any,2,<:LayoutMatrix}}) = _sym_axes(A)
axes(A::UpperOrLowerTriangular{<:Any,<:LayoutMatrix}) = axes(parent(A))
axes(A::UpperOrLowerTriangular{<:Any,<:SubArray{<:Any,2,<:LayoutMatrix}}) = axes(parent(A))
function axes(D::Diagonal{<:Any,<:LayoutVector})
a = axes(parent(D),1)
(a,a)
end