-
-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathallocation.jl
199 lines (182 loc) · 6.23 KB
/
allocation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
@testset "DVector/DMatrix/DArray constructor" begin
for T in [Float32, Float64, Int32, Int64]
V = rand(T, 64)
M = rand(T, 64, 64)
A = rand(T, 64, 64, 64)
# DVector ctor
DV = DVector(V, Blocks(8))
@test DV isa DVector{T}
@test collect(DV) == V
@test size(DV) == size(V)
# DMatrix ctor
DM = DMatrix(M, Blocks(8, 8))
@test DM isa DMatrix{T}
@test collect(DM) == M
@test size(DM) == size(M)
# DArray ctor
DA = DArray(A, Blocks(8, 8, 8))
@test DA isa DArray{T,3}
@test collect(DA) == A
@test size(DA) == size(A)
end
end
@testset "random" begin
for T in [Float32, Float64, Int32, Int64]
for dims in [(100,),
(100, 100),
(100, 100, 100)]
dist = Blocks(ntuple(i->10, length(dims))...)
# rand
X = rand(dist, T, dims...)
@test X isa DArray{T,length(dims)}
@test size(X) == dims
AX = collect(X)
@test AX isa Array{T,length(dims)}
@test AX == collect(X)
@test AX != collect(rand(dist, T, dims...))
if T <: AbstractFloat
# FIXME: Not ideal, but I guess sometimes we can get 0?
@test sum(.!(AX .> 0)) < 10
end
if T in [Float32, Float64]
# randn
Xn = randn(dist, T, dims...)
@test Xn isa DArray{T,length(dims)}
@test size(Xn) == dims
AXn = collect(Xn)
@test AXn isa Array{T,length(dims)}
@test AXn == collect(Xn)
@test AXn != collect(randn(dist, T, dims...))
@test !all(AXn .> 0)
end
if length(dims) <= 2
# sprand
Xsp = sprand(dist, T, dims..., 0.1)
@test Xsp isa DArray{T,length(dims)}
@test size(Xsp) == dims
AXsp = collect(Xsp)
AT = length(dims) == 2 ? SparseMatrixCSC : SparseVector
@test AXsp isa AT{T}
@test AXsp == collect(Xsp)
@test AXsp != collect(sprand(dist, T, dims..., 0.1))
@test !allunique(AXsp)
@test !all(AXsp .> 0)
end
end
end
end
@testset "ones/zeros" begin
for T in [Float32, Float64, Int32, Int64]
for (fn, value) in [(ones, one(T)), (zeros, zero(T))]
for dims in [(100,),
(100, 100),
(100, 100, 100)]
dist = Blocks(ntuple(i->10, length(dims))...)
DA = fn(dist, T, dims...)
@test DA isa DArray{T,length(dims)}
A = collect(DA)
@test all(A .== value)
@test eltype(DA) == eltype(A) == T
@test size(DA) == size(A) == dims
end
end
end
end
@testset "distribute" begin
function test_dist(X)
X1 = distribute(X, Blocks(10, 20))
Xc = fetch(X1)
@test Xc isa DArray{eltype(X),ndims(X)}
@test Xc == X
@test chunks(Xc) |> size == (10, 5)
@test domainchunks(Xc) |> size == (10, 5)
@test map(x->size(x) == (10, 20), domainchunks(Xc)) |> all
end
x = [1 2; 3 4]
@test distribute(x, Blocks(1,1)) == x
test_dist(rand(100, 100))
test_dist(sprand(100, 100, 0.1))
x = distribute(rand(10), 2)
@test collect(distribute(x, 3)) == collect(x)
end
@testset "AutoBlocks" begin
function test_auto_blocks(DA, dims)
np = Dagger.num_processors()
part = DA.partitioning
@test part isa Blocks
part_size = part.blocksize
for i in 1:(length(dims)-1)
@test part_size[i] == 100
end
@test part_size[end] == cld(100, np)
@test size(DA) == ntuple(i->100, length(dims))
end
for dims in [(100,),
(100, 100),
(100, 100, 100)]
fn = if length(dims) == 1
DVector
elseif length(dims) == 2
DMatrix
else
DArray
end
DA = fn(rand(dims...), AutoBlocks())
test_auto_blocks(DA, dims)
DA = distribute(rand(dims...), AutoBlocks())
test_auto_blocks(DA, dims)
for fn in [rand, randn, sprand, ones, zeros]
if fn === sprand
if length(dims) > 2
continue
end
DA = fn(AutoBlocks(), dims..., 0.1)
else
DA = fn(AutoBlocks(), dims...)
end
test_auto_blocks(DA, dims)
end
end
end
@testset "Constructor variants" begin
for fn in [ones, zeros, rand, randn, sprand]
for dims in [(100,),
(100, 100),
(100, 100, 100)]
for dist in [Blocks(ntuple(i->10, length(dims))...),
AutoBlocks()]
if fn === sprand
if length(dims) > 2
continue
end
@test fn(dist, dims..., 0.1) isa DArray{Float64,length(dims)}
@test fn(dist, dims, 0.1) isa DArray{Float64,length(dims)}
@test fn(dist, Float32, dims..., 0.1) isa DArray{Float32,length(dims)}
@test fn(dist, Float32, dims, 0.1) isa DArray{Float32,length(dims)}
else
@test fn(dist, dims...) isa DArray{Float64,length(dims)}
@test fn(dist, dims) isa DArray{Float64,length(dims)}
@test fn(dist, Float32, dims...) isa DArray{Float32,length(dims)}
@test fn(dist, Float32, dims) isa DArray{Float32,length(dims)}
end
end
end
end
end
@testset "view" begin
A = rand(64, 64)
DA = view(A, Blocks(8, 8))
@test collect(DA) == A
@test size(DA) == (64, 64)
A_v = fetch(first(DA.chunks))
@test A_v isa SubArray
@test A_v == A[1:8, 1:8]
end
@testset "copy/similar" begin
X1 = ones(Blocks(10, 10), 100, 100)
X2 = copy(X1)
X3 = similar(X1)
@test typeof(X1) === typeof(X2) === typeof(X3)
@test collect(X1) == collect(X2)
@test collect(X1) != collect(X3)
end