-
-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdarray.jl
861 lines (742 loc) · 28.1 KB
/
darray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
"""
DArray(init, dims, [procs, dist])
Construct a distributed array.
The parameter `init` is a function that accepts a tuple of index ranges.
This function should allocate a local chunk of the distributed array and initialize it for the specified indices.
`dims` is the overall size of the distributed array.
`procs` optionally specifies a vector of process IDs to use.
If unspecified, the array is distributed over all worker processes only. Typically, when running in distributed mode,
i.e., nprocs() > 1, this would mean that no chunk of the distributed array exists on the process hosting the
interactive julia prompt.
`dist` is an integer vector specifying how many chunks the distributed array should be divided into in each dimension.
For example, the `dfill` function that creates a distributed array and fills it with a value `v` is implemented as:
### Example
```jl
dfill(v, args...) = DArray(I->fill(v, map(length,I)), args...)
```
"""
mutable struct DArray{T,N,A} <: AbstractArray{T,N}
id::Tuple
dims::NTuple{N,Int}
pids::Array{Int,N} # pids[i]==p ⇒ processor p has piece i
indices::Array{NTuple{N,UnitRange{Int}},N} # indices held by piece i
cuts::Vector{Vector{Int}} # cuts[d][i] = first index of chunk i in dimension d
localpart::Union{A,Nothing}
release::Bool
function DArray{T,N,A}(id, dims, pids, indices, cuts, lp) where {T,N,A}
# check invariants
if dims != map(last, last(indices))
throw(ArgumentError("dimension of DArray (dim) and indices do not match"))
end
release = (myid() == id[1])
d = d_from_weakref_or_d(id)
if d === nothing
d = new(id, dims, pids, indices, cuts, lp, release)
end
if release
push!(refs, id)
registry[id] = WeakRef(d)
# println("Installing finalizer for : ", d.id, ", : ", object_id(d), ", isbits: ", isbits(d))
finalizer(close, d)
end
d
end
DArray{T,N,A}() where {T,N,A} = new()
end
function d_from_weakref_or_d(id)
d = get(registry, id, nothing)
isa(d, WeakRef) && return d.value
return d
end
Base.eltype(::Type{DArray{T}}) where {T} = T
empty_localpart(T,N,A) = A(Array{T}(undef, ntuple(zero, N)))
const SubDArray{T,N,D<:DArray} = SubArray{T,N,D}
const SubOrDArray{T,N} = Union{DArray{T,N}, SubDArray{T,N}}
localtype(::Type{DArray{T,N,S}}) where {T,N,S} = S
localtype(::Type{SubDArray{T,N,D}}) where {T,N,D} = localtype(D)
localtype(A::SubOrDArray) = localtype(typeof(A))
localtype(A::AbstractArray) = typeof(A)
Base.hash(d::DArray, h::UInt) = Base.hash(d.id, h)
## core constructors ##
function DArray(id, init, dims, pids, idxs, cuts)
localtypes = Vector{DataType}(undef,length(pids))
@sync begin
for i = 1:length(pids)
@async begin
local typA
if isa(init, Function)
typA = remotecall_fetch(construct_localparts, pids[i], init, id, dims, pids, idxs, cuts)
else
# constructing from an array of remote refs.
typA = remotecall_fetch(construct_localparts, pids[i], init[i], id, dims, pids, idxs, cuts)
end
localtypes[i] = typA
end
end
end
if length(unique(localtypes)) != 1
@sync for p in pids
@async remotecall_fetch(release_localpart, p, id)
end
throw(ErrorException("Constructed localparts have different `eltype`: $(localtypes)"))
end
A = first(localtypes)
if myid() in pids
d = registry[id]
d = isa(d, WeakRef) ? d.value : d
else
T = eltype(A)
N = length(dims)
d = DArray{T,N,A}(id, dims, pids, idxs, cuts, empty_localpart(T,N,A))
end
d
end
function construct_localparts(init, id, dims, pids, idxs, cuts; T=nothing, A=nothing)
localpart = isa(init, Function) ? init(idxs[localpartindex(pids)]) : fetch(init)
if A == nothing
A = typeof(localpart)
end
if T == nothing
T = eltype(A)
end
N = length(dims)
d = DArray{T,N,A}(id, dims, pids, idxs, cuts, localpart)
registry[id] = d
A
end
function ddata(;T::Type=Any, init::Function=I->nothing, pids=workers(), data::Vector=[])
pids=sort(vec(pids))
id = next_did()
npids = length(pids)
ldata = length(data)
idxs, cuts = chunk_idxs([npids], [npids])
if ldata > 0
@assert rem(ldata,npids) == 0
if ldata == npids
T = eltype(data)
s = DestinationSerializer(pididx->data[pididx], pids)
init = I->localpart(s)
else
# call the standard distribute function
return distribute(data)
end
end
@sync for i = 1:length(pids)
@async remotecall_fetch(construct_localparts, pids[i], init, id, (npids,), pids, idxs, cuts; T=T, A=T)
end
if myid() in pids
d = registry[id]
d = isa(d, WeakRef) ? d.value : d
else
d = DArray{T,1,T}(id, (npids,), pids, idxs, cuts, nothing)
end
d
end
function gather(d::DArray{T,1,T}) where T
a=Array{T}(undef, length(procs(d)))
@sync for (i,p) in enumerate(procs(d))
@async a[i] = remotecall_fetch(localpart, p, d)
end
a
end
function DArray(init, dims, procs, dist)
np = prod(dist)
procs = reshape(procs[1:np], ntuple(i->dist[i], length(dist)))
idxs, cuts = chunk_idxs([dims...], dist)
id = next_did()
return DArray(id, init, dims, procs, idxs, cuts)
end
function DArray(init, dims, procs)
if isempty(procs)
throw(ArgumentError("no processors given"))
end
return DArray(init, dims, procs, defaultdist(dims, procs))
end
DArray(init, dims) = DArray(init, dims, workers()[1:min(nworkers(), maximum(dims))])
# Create a DArray from a collection of references
# The refs must have the same layout as the parts distributed.
# i.e.
# size(refs) must specify the distribution of dimensions across processors
# prod(size(refs)) must equal number of parts
# FIXME : Empty parts are currently not supported.
function DArray(refs)
dimdist = size(refs)
id = next_did()
npids = [r.where for r in refs]
nsizes = Array{Tuple}(undef, dimdist)
@sync for i in 1:length(refs)
let i=i
@async nsizes[i] = remotecall_fetch(sz_localpart_ref, npids[i], refs[i], id)
end
end
nindices = Array{NTuple{length(dimdist),UnitRange{Int}}}(undef, dimdist...)
for i in 1:length(nindices)
subidx = CartesianIndices(dimdist)[i]
nindices[i] = ntuple(length(subidx)) do x
idx_in_dim = subidx[x]
startidx = 1
for j in 1:(idx_in_dim-1)
prevsubidx = ntuple(y -> y == x ? j : subidx[y], length(subidx))
prevsize = nsizes[prevsubidx...]
startidx += prevsize[x]
end
startidx:startidx+(nsizes[i][x])-1
end
end
lastidxs = hcat([Int[last(idx_in_d)+1 for idx_in_d in idx] for idx in nindices]...)
ncuts = Array{Int,1}[pushfirst!(sort(unique(lastidxs[x,:])), 1) for x in 1:length(dimdist)]
ndims = tuple([sort(unique(lastidxs[x,:]))[end]-1 for x in 1:length(dimdist)]...)
DArray(id, refs, ndims, reshape(npids, dimdist), nindices, ncuts)
end
macro DArray(ex0::Expr)
if ex0.head !== :comprehension
throw(ArgumentError("invalid @DArray syntax"))
end
ex = ex0.args[1]
if ex.head !== :generator
throw(ArgumentError("invalid @DArray syntax"))
end
ex.args[1] = esc(ex.args[1])
ndim = length(ex.args) - 1
ranges = map(r->esc(r.args[2]), ex.args[2:end])
for d = 1:ndim
var = ex.args[d+1].args[1]
ex.args[d+1] = :( $(esc(var)) = ($(ranges[d]))[I[$d]] )
end
return :( DArray((I::Tuple{Vararg{UnitRange{Int}}})->($ex0),
tuple($(map(r->:(length($r)), ranges)...))) )
end
# new DArray similar to an existing one
DArray(init, d::DArray) = DArray(next_did(), init, size(d), procs(d), d.indices, d.cuts)
sz_localpart_ref(ref, id) = size(fetch(ref))
Base.similar(d::DArray, T::Type, dims::Dims) = DArray(I->Array{T}(undef, map(length,I)), dims, procs(d))
Base.similar(d::DArray, T::Type) = similar(d, T, size(d))
Base.similar(d::DArray{T}, dims::Dims) where {T} = similar(d, T, dims)
Base.similar(d::DArray{T}) where {T} = similar(d, T, size(d))
Base.size(d::DArray) = d.dims
chunktype(d::DArray{T,N,A}) where {T,N,A} = A
## chunk index utilities ##
# decide how to divide each dimension
# returns size of chunks array
function defaultdist(dims, pids)
dims = [dims...]
chunks = ones(Int, length(dims))
np = length(pids)
f = sort!(collect(keys(factor(np))), rev=true)
k = 1
while np > 1
# repeatedly allocate largest factor to largest dim
if np % f[k] != 0
k += 1
if k > length(f)
break
end
end
fac = f[k]
(d, dno) = findmax(dims)
# resolve ties to highest dim
dno = findlast(isequal(d), dims)
if dims[dno] >= fac
dims[dno] = div(dims[dno], fac)
chunks[dno] *= fac
end
np = div(np, fac)
end
return chunks
end
# get array of start indices for dividing sz into nc chunks
function defaultdist(sz::Int, nc::Int)
if sz >= nc
chunk_size = div(sz,nc)
remainder = rem(sz,nc)
grid = zeros(Int64, nc+1)
for i = 1:(nc+1)
grid[i] += (i-1)*chunk_size + 1
if i<= remainder
grid[i] += i-1
else
grid[i] += remainder
end
end
return grid
else
return [[1:(sz+1);]; zeros(Int, nc-sz)]
end
end
# compute indices array for dividing dims into chunks
function chunk_idxs(dims, chunks)
cuts = map(defaultdist, dims, chunks)
n = length(dims)
idxs = Array{NTuple{n,UnitRange{Int}}}(undef, chunks...)
for cidx in CartesianIndices(tuple(chunks...))
idxs[cidx.I...] = ntuple(i -> (cuts[i][cidx[i]]:cuts[i][cidx[i] + 1] - 1), n)
end
return (idxs, cuts)
end
function localpartindex(pids::Array{Int})
mi = myid()
for i = 1:length(pids)
if pids[i] == mi
return i
end
end
return 0
end
localpartindex(d::DArray) = localpartindex(procs(d))
"""
localpart(d::DArray)
Get the local piece of a distributed array.
Returns an empty array if no local part exists on the calling process.
d[:L], d[:l], d[:LP], d[:lp] are an alternative means to get localparts.
This syntaxt can also be used for assignment. For example,
`d[:L]=v` will assign `v` to the localpart of `d`.
"""
function localpart(d::DArray{T,N,A}) where {T,N,A}
lpidx = localpartindex(d)
if lpidx == 0
return empty_localpart(T,N,A)::A
end
return d.localpart::A
end
localpart(d::DArray, localidx...) = localpart(d)[localidx...]
_localindex(i::Integer, offset) = i - offset
_localindex(i::AbstractRange, offset) = (first(i)-offset):step(i):(last(i)-offset)
_localindex(i::AbstractUnitRange, offset) = (first(i)-offset):(last(i)-offset)
"""
makelocal(A::DArray, I...)
Equivalent to `Array(view(A, I...))` but optimised for the case that the data is local.
Can return a view into `localpart(A)`
"""
function makelocal(A::DArray{<:Any, <:Any, AT}, I::Vararg{Any, N}) where {N, AT}
Base.@_inline_meta
J = map(i->Base.unalias(A, i), to_indices(A, I))
J = map(j-> isa(j, Base.Slice) ? j.indices : j, J)
@boundscheck checkbounds(A, J...)
lidcs = localindices(A)
if Base.checkbounds_indices(Bool, lidcs, J)
# data we want is local
viewidcs = ntuple(i -> _localindex(J[i], first(lidcs[i]) - 1), ndims(A))
view(localpart(A), viewidcs...)
else
# Make more efficient (?maybe) by allocating new memory
# only for the remote part
viewidcs = ntuple(i -> _localindex(J[i], 0), ndims(A))
arr = similar(AT, map(length, viewidcs)...)
copyto!(arr, view(A, viewidcs...))
end
end
# shortcut to set/get localparts of a distributed object
function Base.getindex(d::DArray, s::Symbol)
@assert s in [:L, :l, :LP, :lp]
return localpart(d)
end
function Base.setindex!(d::DArray{T,N,A}, new_lp::A, s::Symbol) where {T,N,A}
@assert s in [:L, :l, :LP, :lp]
d.localpart = new_lp
new_lp
end
# fetch localpart of d at pids[i]
Base.fetch(d::DArray{T,N,A}, i) where {T,N,A} = remotecall_fetch(localpart, d.pids[i], d)
"""
localindices(d)
A tuple describing the indices owned by the local process.
Returns a tuple with empty ranges if no local part exists on the calling process.
"""
function localindices(d::DArray)
lpidx = localpartindex(d)
if lpidx == 0
return ntuple(i -> 1:0, ndims(d))
end
return d.indices[lpidx]
end
# Equality
function Base.:(==)(d::DArray{<:Any,<:Any,A}, a::AbstractArray) where A
if size(d) != size(a)
return false
else
b = asyncmap(procs(d)) do p
remotecall_fetch(p) do
localpart(d) == A(a[localindices(d)...])
end
end
return all(b)
end
end
function Base.:(==)(d::SubDArray, a::AbstractArray)
cd = copy(d)
t = cd == a
close(cd)
return t
end
Base.:(==)(a::AbstractArray, d::DArray) = d == a
Base.:(==)(a::AbstractArray, d::SubDArray) = d == a
Base.:(==)(d1::DArray, d2::DArray) = invoke(==, Tuple{DArray, AbstractArray}, d1, d2)
function Base.:(==)(d1::SubDArray, d2::DArray)
cd1 = copy(d1)
t = cd1 == d2
close(cd1)
return t
end
function Base.:(==)(d1::DArray, d2::SubDArray)
cd2 = copy(d2)
t = d1 == cd2
close(cd2)
return t
end
function Base.:(==)(d1::SubDArray, d2::SubDArray)
cd1 = copy(d1)
t = cd1 == d2
close(cd1)
return t
end
"""
locate(d::DArray, I::Int...)
Determine the index of `procs(d)` that hold element `I`.
"""
function locate(d::DArray, I::Int...)
ntuple(ndims(d)) do i
fi = searchsortedlast(d.cuts[i], I[i])
if fi >= length(d.cuts[i])
throw(ArgumentError("element not contained in array"))
end
return fi
end
end
chunk(d::DArray{T,N,A}, i...) where {T,N,A} = remotecall_fetch(localpart, d.pids[i...], d)::A
## convenience constructors ##
"""
dzeros(dims, ...)
Construct a distributed array of zeros.
Trailing arguments are the same as those accepted by `DArray`.
"""
dzeros(dims::Dims, args...) = DArray(I->zeros(map(length,I)), dims, args...)
dzeros(::Type{T}, dims::Dims, args...) where {T} = DArray(I->zeros(T,map(length,I)), dims, args...)
dzeros(::Type{T}, d1::Integer, drest::Integer...) where {T} = dzeros(T, convert(Dims, tuple(d1, drest...)))
dzeros(d1::Integer, drest::Integer...) = dzeros(Float64, convert(Dims, tuple(d1, drest...)))
dzeros(d::Dims) = dzeros(Float64, d)
"""
dones(dims, ...)
Construct a distributed array of ones.
Trailing arguments are the same as those accepted by `DArray`.
"""
dones(dims::Dims, args...) = DArray(I->ones(map(length,I)), dims, args...)
dones(::Type{T}, dims::Dims, args...) where {T} = DArray(I->ones(T,map(length,I)), dims, args...)
dones(::Type{T}, d1::Integer, drest::Integer...) where {T} = dones(T, convert(Dims, tuple(d1, drest...)))
dones(d1::Integer, drest::Integer...) = dones(Float64, convert(Dims, tuple(d1, drest...)))
dones(d::Dims) = dones(Float64, d)
"""
dfill(x, dims, ...)
Construct a distributed array filled with value `x`.
Trailing arguments are the same as those accepted by `DArray`.
"""
dfill(v, dims::Dims, args...) = DArray(I->fill(v, map(length,I)), dims, args...)
dfill(v, d1::Integer, drest::Integer...) = dfill(v, convert(Dims, tuple(d1, drest...)))
"""
drand(dims, ...)
Construct a distributed uniform random array.
Trailing arguments are the same as those accepted by `DArray`.
"""
drand(r, dims::Dims, args...) = DArray(I -> rand(r, map(length,I)), dims, args...)
drand(r, d1::Integer, drest::Integer...) = drand(r, convert(Dims, tuple(d1, drest...)))
drand(d1::Integer, drest::Integer...) = drand(Float64, convert(Dims, tuple(d1, drest...)))
drand(d::Dims, args...) = drand(Float64, d, args...)
"""
drandn(dims, ...)
Construct a distributed normal random array.
Trailing arguments are the same as those accepted by `DArray`.
"""
drandn(dims::Dims, args...) = DArray(I->randn(map(length,I)), dims, args...)
drandn(d1::Integer, drest::Integer...) = drandn(convert(Dims, tuple(d1, drest...)))
## conversions ##
"""
distribute(A[; procs, dist])
Convert a local array to distributed.
`procs` optionally specifies an array of process IDs to use. (defaults to all workers)
`dist` optionally specifies a vector or tuple of the number of partitions in each dimension
"""
function distribute(A::AbstractArray;
procs = workers()[1:min(nworkers(), maximum(size(A)))],
dist = defaultdist(size(A), procs))
np = prod(dist)
procs_used = procs[1:np]
idxs, _ = chunk_idxs([size(A)...], dist)
s = verified_destination_serializer(reshape(procs_used, size(idxs)), size(idxs)) do pididx
A[idxs[pididx]...]
end
return DArray(I->localpart(s), size(A), procs_used, dist)
end
"""
distribute(A, DA)
Distribute a local array `A` like the distributed array `DA`.
"""
function distribute(A::AbstractArray, DA::DArray)
size(DA) == size(A) || throw(DimensionMismatch("Distributed array has size $(size(DA)) but array has $(size(A))"))
s = verified_destination_serializer(procs(DA), size(DA.indices)) do pididx
A[DA.indices[pididx]...]
end
return DArray(I->localpart(s), DA)
end
DArray{T,N,S}(A::S) where {T,N,S<:AbstractArray} = distribute(convert(AbstractArray{T,N}, A))
function Array{S,N}(d::DArray{T,N}) where {S,T,N}
a = Array{S}(undef, size(d))
@sync begin
for i = 1:length(d.pids)
@async a[d.indices[i]...] = chunk(d, i)
end
end
return a
end
function Array{S,N}(s::SubDArray{T,N}) where {S,T,N}
I = s.indices
d = s.parent
if isa(I,Tuple{Vararg{UnitRange{Int}}}) && S<:T && T<:S && !isempty(s)
l = locate(d, map(first, I)...)
if isequal(d.indices[l...], I)
# SubDArray corresponds to a chunk
return chunk(d, l...)
end
end
a = Array{S}(undef, size(s))
copyto!(a, s)
end
function Base.copyto!(a::Array, s::SubDArray)
N = ndims(a)
a[[1:size(a,i) for i=1:N]...] = s
return a
end
if VERSION < v"1.2"
# This is an internal API that has changed
reindex(A, I, J) = Base.reindex(A, I, J)
else
reindex(A, I, J) = Base.reindex(I, J)
end
function DArray(SD::SubArray{T,N}) where {T,N}
D = SD.parent
DArray(size(SD), procs(D)) do I
lindices = reindex(SD, SD.indices, I)
convert(Array, D[lindices...])
end
end
function Base.reshape(A::DArray{T,1,S}, d::Dims) where {T,S<:Array}
if prod(d) != length(A)
throw(DimensionMismatch("dimensions must be consistent with array size"))
end
return DArray(d) do I
sz = map(length,I)
d1offs = first(I[1])
nd = length(I)
B = Array{T}(undef, sz)
nr = size(B,1)
sztail = size(B)[2:end]
for i=1:div(length(B),nr)
i2 = CartesianIndices(sztail)[i]
globalidx = [ I[j][i2[j-1]] for j=2:nd ]
a = LinearIndices(d)[d1offs, globalidx...]
B[:,i] = Array(A[a:(a+nr-1)])
end
B
end
end
## indexing ##
const _allowscalar = Ref(true)
allowscalar(flag = true) = (_allowscalar[] = flag)
_scalarindexingallowed() = _allowscalar[] || throw(ErrorException("scalar indexing disabled"))
getlocalindex(d::DArray, idx...) = localpart(d)[idx...]
function getindex_tuple(d::DArray{T}, I::Tuple{Vararg{Int}}) where T
chidx = locate(d, I...)
idxs = d.indices[chidx...]
localidx = ntuple(i -> (I[i] - first(idxs[i]) + 1), ndims(d))
pid = d.pids[chidx...]
return remotecall_fetch(getlocalindex, pid, d, localidx...)::T
end
function Base.getindex(d::DArray, i::Int)
_scalarindexingallowed()
return getindex_tuple(d, Tuple(CartesianIndices(d)[i]))
end
function Base.getindex(d::DArray, i::Int...)
_scalarindexingallowed()
return getindex_tuple(d, i)
end
Base.getindex(d::DArray) = d[1]
if VERSION > v"1.1-"
Base.getindex(d::SubDArray, I::Int...) = invoke(getindex, Tuple{SubArray{<:Any,N},Vararg{Int,N}} where N, d, I...)
end
Base.getindex(d::SubOrDArray, I::Union{Int,UnitRange{Int},Colon,Vector{Int},StepRange{Int,Int}}...) = view(d, I...)
function Base.isassigned(D::DArray, i::Integer...)
try
getindex_tuple(D, i)
true
catch e
if isa(e, BoundsError) || isa(e, UndefRefError)
return false
else
rethrow(e)
end
end
end
Base.copy(d::SubDArray) = copyto!(similar(d), d)
Base.copy(d::SubDArray{<:Any,2}) = copyto!(similar(d), d)
function Base.copyto!(dest::SubOrDArray, src::AbstractArray)
asyncmap(procs(dest)) do p
remotecall_fetch(p) do
ldest = localpart(dest)
copyto!(ldest, view(src, localindices(dest)...))
end
end
return dest
end
function Base.deepcopy(src::DArray)
dest = similar(src)
asyncmap(procs(src)) do p
remotecall_fetch(p) do
dest[:L] = deepcopy(src[:L])
end
end
return dest
end
# local copies are obtained by convert(Array, ) or assigning from
# a SubDArray to a local Array.
function Base.setindex!(a::Array, d::DArray,
I::Union{UnitRange{Int},Colon,Vector{Int},StepRange{Int,Int}}...)
n = length(I)
@sync for i = 1:length(d.pids)
K = d.indices[i]
@async a[[I[j][K[j]] for j=1:n]...] = chunk(d, i)
end
return a
end
# We also want to optimize setindex! with a SubDArray source, but this is hard
# and only works on 0.5.
# Similar to Base.indexin, but just create a logical mask. Note that this
# must return a logical mask in order to support merging multiple masks
# together into one linear index since we need to know how many elements to
# skip at the end. In many cases range intersection would be much faster
# than generating a logical mask, but that loses the endpoint information.
indexin_mask(a, b::Number) = a .== b
indexin_mask(a, r::AbstractRange{Int}) = [i in r for i in a]
indexin_mask(a, b::AbstractArray{Int}) = indexin_mask(a, IntSet(b))
indexin_mask(a, b::AbstractArray) = indexin_mask(a, Set(b))
indexin_mask(a, b) = [i in b for i in a]
import Base: tail
# Given a tuple of indices and a tuple of masks, restrict the indices to the
# valid regions. This is, effectively, reversing Base.setindex_shape_check.
# We can't just use indexing into MergedIndices here because getindex is much
# pickier about singleton dimensions than setindex! is.
restrict_indices(::Tuple{}, ::Tuple{}) = ()
function restrict_indices(a::Tuple{Any, Vararg{Any}}, b::Tuple{Any, Vararg{Any}})
if (length(a[1]) == length(b[1]) == 1) || (length(a[1]) > 1 && length(b[1]) > 1)
(vec(a[1])[vec(b[1])], restrict_indices(tail(a), tail(b))...)
elseif length(a[1]) == 1
(a[1], restrict_indices(tail(a), b))
elseif length(b[1]) == 1 && b[1][1]
restrict_indices(a, tail(b))
else
throw(DimensionMismatch("this should be caught by setindex_shape_check; please submit an issue"))
end
end
# The final indices are funky - they're allowed to accumulate together.
# An easy (albeit very inefficient) fix for too many masks is to use the
# outer product to merge them. But we can do that lazily with a custom type:
function restrict_indices(a::Tuple{Any}, b::Tuple{Any, Any, Vararg{Any}})
(vec(a[1])[vec(ProductIndices(b, map(length, b)))],)
end
# But too many indices is much harder; this requires merging the indices
# in `a` before applying the final mask in `b`.
function restrict_indices(a::Tuple{Any, Any, Vararg{Any}}, b::Tuple{Any})
if length(a[1]) == 1
(a[1], restrict_indices(tail(a), b))
else
# When one mask spans multiple indices, we need to merge the indices
# together. At this point, we can just use indexing to merge them since
# there's no longer special handling of singleton dimensions
(view(MergedIndices(a, map(length, a)), b[1]),)
end
end
struct ProductIndices{I,N} <: AbstractArray{Bool, N}
indices::I
sz::NTuple{N,Int}
end
Base.size(P::ProductIndices) = P.sz
# This gets passed to map to avoid breaking propagation of inbounds
Base.@propagate_inbounds propagate_getindex(A, I...) = A[I...]
Base.@propagate_inbounds Base.getindex(P::ProductIndices{J,N}, I::Vararg{Int, N}) where {J,N} =
Bool((&)(map(propagate_getindex, P.indices, I)...))
struct MergedIndices{I,N} <: AbstractArray{CartesianIndex{N}, N}
indices::I
sz::NTuple{N,Int}
end
Base.size(M::MergedIndices) = M.sz
Base.@propagate_inbounds Base.getindex(M::MergedIndices{J,N}, I::Vararg{Int, N}) where {J,N} =
CartesianIndex(map(propagate_getindex, M.indices, I))
# Additionally, we optimize bounds checking when using MergedIndices as an
# array index since checking, e.g., A[1:500, 1:500] is *way* faster than
# checking an array of 500^2 elements of CartesianIndex{2}. This optimization
# also applies to reshapes of MergedIndices since the outer shape of the
# container doesn't affect the index elements themselves. We can go even
# farther and say that even restricted views of MergedIndices must be valid
# over the entire array. This is overly strict in general, but in this
# use-case all the merged indices must be valid at some point, so it's ok.
const ReshapedMergedIndices{T,N,M<:MergedIndices} = Base.ReshapedArray{T,N,M}
const SubMergedIndices{T,N,M<:Union{MergedIndices, ReshapedMergedIndices}} = SubArray{T,N,M}
const MergedIndicesOrSub = Union{MergedIndices, ReshapedMergedIndices, SubMergedIndices}
import Base: checkbounds_indices
@inline checkbounds_indices(::Type{Bool}, inds::Tuple{}, I::Tuple{MergedIndicesOrSub,Vararg{Any}}) =
checkbounds_indices(Bool, inds, (parent(parent(I[1])).indices..., tail(I)...))
@inline checkbounds_indices(::Type{Bool}, inds::Tuple{Any}, I::Tuple{MergedIndicesOrSub,Vararg{Any}}) =
checkbounds_indices(Bool, inds, (parent(parent(I[1])).indices..., tail(I)...))
@inline checkbounds_indices(::Type{Bool}, inds::Tuple, I::Tuple{MergedIndicesOrSub,Vararg{Any}}) =
checkbounds_indices(Bool, inds, (parent(parent(I[1])).indices..., tail(I)...))
# The tricky thing here is that we want to optimize the accesses into the
# distributed array, but in doing so, we lose track of which indices in I we
# should be using.
#
# I’ve come to the conclusion that the function is utterly insane.
# There are *6* flavors of indices with four different reference points:
# 1. Find the indices of each portion of the DArray.
# 2. Find the valid subset of indices for the SubArray into that portion.
# 3. Find the portion of the `I` indices that should be used when you access the
# `K` indices in the subarray. This guy is nasty. It’s totally backwards
# from all other arrays, wherein we simply iterate over the source array’s
# elements. You need to *both* know which elements in `J` were skipped
# (`indexin_mask`) and which dimensions should match up (`restrict_indices`)
# 4. If `K` doesn’t correspond to an entire chunk, reinterpret `K` in terms of
# the local portion of the source array
function Base.setindex!(a::Array, s::SubDArray,
I::Union{UnitRange{Int},Colon,Vector{Int},StepRange{Int,Int}}...)
Inew = Base.to_indices(a, I)
Base.setindex_shape_check(s, Base.index_lengths(Inew...)...)
n = length(Inew)
d = s.parent
J = Base.to_indices(d, s.indices)
@sync for i = 1:length(d.pids)
K_c = d.indices[i]
K = map(intersect, J, K_c)
if !any(isempty, K)
K_mask = map(indexin_mask, J, K_c)
idxs = restrict_indices(Inew, K_mask)
if isequal(K, K_c)
# whole chunk
@async a[idxs...] = chunk(d, i)
else
# partial chunk
@async a[idxs...] =
remotecall_fetch(d.pids[i]) do
view(localpart(d), [K[j].-first(K_c[j]).+1 for j=1:length(J)]...)
end
end
end
end
return a
end
function Base.fill!(A::DArray, x)
@sync for p in procs(A)
@async remotecall_fetch((A,x)->(fill!(localpart(A), x); nothing), p, A, x)
end
return A
end
using Random
function Random.rand!(A::DArray, ::Type{T}) where T
asyncmap(procs(A)) do p
remotecall_wait((A, T)->rand!(localpart(A), T), p, A, T)
end
end