4
4
5
5
import Base: sort!, findall, copy!
6
6
import LinearAlgebra: promote_to_array_type, promote_to_arrays_
7
- using LinearAlgebra: _SpecialArrays, _DenseConcatGroup
8
7
9
8
# ## The SparseVector
10
9
@@ -1175,24 +1174,10 @@ function _absspvec_vcat(X::AbstractSparseVector{Tv,Ti}...) where {Tv,Ti}
1175
1174
SparseVector (len, rnzind, rnzval)
1176
1175
end
1177
1176
1178
- hcat (Xin:: Union{Vector, AbstractSparseVector} ...) = hcat (map (sparse, Xin)... )
1179
- vcat (Xin:: Union{Vector, AbstractSparseVector} ...) = vcat (map (sparse, Xin)... )
1180
-
1181
1177
# ## Concatenation of un/annotated sparse/special/dense vectors/matrices
1182
-
1183
- const _SparseArrays = Union{AbstractSparseVector,
1184
- AbstractSparseMatrixCSC,
1185
- Adjoint{<: Any ,<: AbstractSparseVector },
1186
- Transpose{<: Any ,<: AbstractSparseVector }}
1187
- const _SparseConcatArrays = Union{_SpecialArrays, _SparseArrays}
1188
-
1189
- const _Symmetric_SparseConcatArrays = Symmetric{<: Any ,<: _SparseConcatArrays }
1190
- const _Hermitian_SparseConcatArrays = Hermitian{<: Any ,<: _SparseConcatArrays }
1191
- const _Triangular_SparseConcatArrays = UpperOrLowerTriangular{<: Any ,<: _SparseConcatArrays }
1192
- const _Annotated_SparseConcatArrays = Union{_Triangular_SparseConcatArrays, _Symmetric_SparseConcatArrays, _Hermitian_SparseConcatArrays}
1193
- # It's important that _SparseConcatGroup is a larger union than _DenseConcatGroup to make
1194
- # sparse cat-methods less specific and to kick in only if there is some sparse array present
1195
- const _SparseConcatGroup = Union{_DenseConcatGroup, _SparseConcatArrays, _Annotated_SparseConcatArrays}
1178
+ # by type-pirating and subverting the Base.cat design by making these a subtype of the normal methods for it
1179
+ # and re-defining all of it here. See https://github.com/JuliaLang/julia/issues/2326
1180
+ # for what would have been a more principled way of doing this.
1196
1181
1197
1182
# Concatenations involving un/annotated sparse/special matrices/vectors should yield sparse arrays
1198
1183
@@ -1204,23 +1189,55 @@ _sparse(A) = _makesparse(A)
1204
1189
_makesparse (x:: Number ) = x
1205
1190
_makesparse (x:: AbstractVector ) = convert (SparseVector, issparse (x) ? x : sparse (x)):: SparseVector
1206
1191
_makesparse (x:: AbstractMatrix ) = convert (SparseMatrixCSC, issparse (x) ? x : sparse (x)):: SparseMatrixCSC
1192
+ anysparse () = false
1193
+ anysparse (X) = X isa AbstractArray && issparse (X)
1194
+ anysparse (X, Xs... ) = anysparse (X) || anysparse (Xs... )
1195
+
1196
+ function hcat (X:: Union{Vector, AbstractSparseVector} ...)
1197
+ if anysparse (X... )
1198
+ X = map (sparse, X)
1199
+ end
1200
+ return cat (X... ; dims= Val (2 ))
1201
+ end
1202
+ function vcat (X:: Union{Vector, AbstractSparseVector} ...)
1203
+ if anysparse (X... )
1204
+ X = map (sparse, X)
1205
+ end
1206
+ return cat (X... ; dims= Val (1 ))
1207
+ end
1208
+
1209
+ # type-pirate the Base.cat design by making this a subtype of the existing method for it
1210
+ # in future versions of Julia (v1.10+), in which https://github.com/JuliaLang/julia/issues/2326 is not fixed yet, the <:Number constraint could be relaxed
1211
+ # but see also https://github.com/JuliaSparse/SparseArrays.jl/issues/71
1212
+ const _SparseConcatGroup = Union{AbstractVecOrMat{<: Number },Number}
1207
1213
1208
1214
# `@constprop :aggressive` allows `dims` to be propagated as constant improving return type inference
1209
- Base. @constprop :aggressive function Base. _cat (dims, Xin:: _SparseConcatGroup... )
1210
- X = (_sparse (first (Xin)), map (_makesparse, Base. tail (Xin))... )
1211
- T = promote_eltype (Xin... )
1215
+ Base. @constprop :aggressive function Base. _cat (dims, X:: _SparseConcatGroup... )
1216
+ T = promote_eltype (X... )
1217
+ if anysparse (X... )
1218
+ X = (_sparse (first (X)), map (_makesparse, Base. tail (X))... )
1219
+ end
1212
1220
return Base. _cat_t (dims, T, X... )
1213
1221
end
1214
- function hcat (Xin:: _SparseConcatGroup... )
1215
- X = (_sparse (first (Xin)), map (_makesparse, Base. tail (Xin))... )
1222
+ function hcat (X:: _SparseConcatGroup... )
1223
+ if anysparse (X... )
1224
+ X = (_sparse (first (X)), map (_makesparse, Base. tail (X))... )
1225
+ end
1216
1226
return cat (X... , dims= Val (2 ))
1217
1227
end
1218
- function vcat (Xin:: _SparseConcatGroup... )
1219
- X = (_sparse (first (Xin)), map (_makesparse, Base. tail (Xin))... )
1228
+ function vcat (X:: _SparseConcatGroup... )
1229
+ if anysparse (X... )
1230
+ X = (_sparse (first (X)), map (_makesparse, Base. tail (X))... )
1231
+ end
1220
1232
return cat (X... , dims= Val (1 ))
1221
1233
end
1222
- hvcat (rows:: Tuple{Vararg{Int}} , X:: _SparseConcatGroup... ) =
1223
- vcat (_hvcat_rows (rows, X... )... )
1234
+ function hvcat (rows:: Tuple{Vararg{Int}} , X:: _SparseConcatGroup... )
1235
+ if anysparse (X... )
1236
+ vcat (_hvcat_rows (rows, X... )... )
1237
+ else
1238
+ typed_hvcat (promote_eltypeof (X... ), rows, X... )
1239
+ end
1240
+ end
1224
1241
function _hvcat_rows ((row1, rows... ):: Tuple{Vararg{Int}} , X:: _SparseConcatGroup... )
1225
1242
if row1 ≤ 0
1226
1243
throw (ArgumentError (" length of block row must be positive, got $row1 " ))
@@ -1237,7 +1254,7 @@ end
1237
1254
_hvcat_rows (:: Tuple{} , X:: _SparseConcatGroup... ) = ()
1238
1255
1239
1256
# make sure UniformScaling objects are converted to sparse matrices for concatenation
1240
- promote_to_array_type (A:: Tuple{Vararg{Union{_SparseConcatGroup,UniformScaling}}} ) = SparseMatrixCSC
1257
+ promote_to_array_type (A:: Tuple{Vararg{Union{_SparseConcatGroup,UniformScaling}}} ) = anysparse (A ... ) ? SparseMatrixCSC : Matrix
1241
1258
promote_to_arrays_ (n:: Int , :: Type{SparseMatrixCSC} , J:: UniformScaling ) = sparse (J, n, n)
1242
1259
1243
1260
"""
0 commit comments