-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
177 lines (161 loc) · 5.68 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import json
from argparse import Namespace as Config
from pprint import pprint
import torch
from torch.utils.data import DataLoader, Dataset
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from models import get_auto_model
from utils.collate import DataCollatorForGPLinker, DataCollatorForTPLinkerPlus
from utils.postprocess import postprocess_gplinker, postprocess_tplinker_plus
class DummpyDataset(Dataset):
def __init__(self, file, tokenizer, max_length=512, debug=False):
super().__init__()
self.data = self.load_data(file)
if debug:
self.data = self.data[:256]
self.tokenizer = tokenizer
self.max_length = max_length
def __getitem__(self, index):
data = self.data[index]
out = self.tokenizer(
data["text"],
max_length=self.max_length,
truncation=True,
return_offsets_mapping=True,
return_token_type_ids=True,
padding=False,
)
out["text"] = data["text"]
return out
def __len__(self):
return len(self.data)
def load_data(self, filename):
"""加载数据
单条格式:{'text': text, 'spo_list': [(s, p, o)]}
"""
D = []
with open(filename, "r", encoding="utf8") as f:
for l in f:
l = json.loads(l)
D.append(
{
"text": l["text"],
"spo_list": [
(spo["subject"], spo["predicate"], spo["object"])
for spo in l["spo_list"]
],
}
)
return D
def fire(args):
predicate2id = {}
id2predicate = {}
with open("data/all_50_schemas", "r", encoding="utf-8") as f:
for l in f:
l = json.loads(l)
if l["predicate"] not in predicate2id:
id2predicate[len(predicate2id)] = l["predicate"]
predicate2id[l["predicate"]] = len(predicate2id)
args.predicate2id = predicate2id
args.id2predicate = id2predicate
if args.method == "tplinker_plus":
link_types = [
"SH2OH", # subject head to object head
"OH2SH", # object head to subject head
"ST2OT", # subject tail to object tail
"OT2ST", # object tail to subject tail
]
tags = []
for lk in link_types:
for rel in predicate2id.keys():
tags.append("=".join([rel, lk]))
tags.append("DEFAULT=EH2ET")
args.tag2id = {t: idx for idx, t in enumerate(tags)}
args.id2tag = {idx: t for t, idx in args.tag2id.items()}
# model & tokenizer
model_cls = get_auto_model(args.model_type, args.method)
model = model_cls.from_pretrained(
args.model_path, predicate2id=predicate2id)
model.eval()
model.to(args.device)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
dataset = DummpyDataset(
args.in_file, tokenizer, max_length=args.max_length, debug=args.debug
)
collate_cls = (
DataCollatorForGPLinker
if args.method == "gplinker"
else DataCollatorForTPLinkerPlus
)
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
collate_fn=collate_cls(tokenizer),
num_workers=args.num_workers,
)
all_predictions = []
with torch.no_grad():
for batch in tqdm(
dataloader,
desc="Evaluating: ",
):
offset_mappings = batch.pop("offset_mapping")
texts = batch.pop("text")
batch.to(args.device)
outputs = model(**batch)[0]
if args.method == "gplinker":
outputs_gathered = postprocess_gplinker(
args, outputs, offset_mappings, texts, threshold=0
)
elif args.method == "tplinker_plus":
outputs_gathered = postprocess_tplinker_plus(
args, outputs, offset_mappings, texts, batch["input_ids"].size(
1)
)
else:
raise ValueError(
"args.method should be chosen from ['gplinker', 'tplinker_plus']!"
)
all_predictions.extend(outputs_gathered)
X, Y, Z = 1e-10, 1e-10, 1e-10
with open(args.out_file, "w", encoding="utf-8") as f:
for preds, raw_data in zip(all_predictions, dataloader.dataset.data):
R = set(preds)
T = set(raw_data["spo_list"])
X += len(R & T)
Y += len(R)
Z += len(T)
s = json.dumps(
{
"text": raw_data["text"],
"spo_list": list(T),
"spo_list_pred": list(R),
"new": list(R - T),
"lack": list(T - R),
},
ensure_ascii=False,
)
f.write(s + "\n")
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
retults = {"f1": f1, "precision": precision, "recall": recall}
pprint(retults)
return retults
if __name__ == "__main__":
debug = True
use_gpu = False
args = Config(
debug=debug,
model_type="bert",
method="gplinker",
batch_size=32,
max_length=128,
num_workers=6,
in_file="data/dev_data.json",
out_file="preds.json" if not debug else "debug.json",
model_path="outputs/bert-hfl_chinese-roberta-wwm-ext/ckpt/step-10804-spo-f1-0.81283402101807955",
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if use_gpu
else "cpu",
)
fire(args)