forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuniformscaling.jl
272 lines (246 loc) · 11.5 KB
/
uniformscaling.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# This file is a part of Julia. License is MIT: https://julialang.org/license
module TestUniformscaling
using Test, LinearAlgebra, Random, SparseArrays
Random.seed!(123)
@testset "basic functions" begin
@test I[1,1] == 1 # getindex
@test I[1,2] == 0 # getindex
@test I === I' # transpose
@test ndims(I) == 2
@test one(UniformScaling{Float32}) == UniformScaling(one(Float32))
@test zero(UniformScaling{Float32}) == UniformScaling(zero(Float32))
@test eltype(one(UniformScaling{Float32})) == Float32
@test zero(UniformScaling(rand(ComplexF64))) == zero(UniformScaling{ComplexF64})
@test one(UniformScaling(rand(ComplexF64))) == one(UniformScaling{ComplexF64})
@test eltype(one(UniformScaling(rand(ComplexF64)))) == ComplexF64
@test -one(UniformScaling(2)) == UniformScaling(-1)
@test sparse(3I,4,5) == sparse(1:4, 1:4, 3, 4, 5)
@test sparse(3I,5,4) == sparse(1:4, 1:4, 3, 5, 4)
@test opnorm(UniformScaling(1+im)) ≈ sqrt(2)
end
@testset "conjugation of UniformScaling" begin
@test conj(UniformScaling(1))::UniformScaling{Int} == UniformScaling(1)
@test conj(UniformScaling(1.0))::UniformScaling{Float64} == UniformScaling(1.0)
@test conj(UniformScaling(1+1im))::UniformScaling{Complex{Int}} == UniformScaling(1-1im)
@test conj(UniformScaling(1.0+1.0im))::UniformScaling{Complex{Float64}} == UniformScaling(1.0-1.0im)
end
@testset "istriu, istril, issymmetric, ishermitian, isapprox" begin
@test istriu(I)
@test istril(I)
@test issymmetric(I)
@test issymmetric(UniformScaling(complex(1.0,1.0)))
@test ishermitian(I)
@test !ishermitian(UniformScaling(complex(1.0,1.0)))
@test UniformScaling(4.00000000000001) ≈ UniformScaling(4.0)
@test UniformScaling(4.32) ≈ UniformScaling(4.3) rtol=0.1 atol=0.01
@test UniformScaling(4.32) ≈ 4.3 * [1 0; 0 1] rtol=0.1 atol=0.01
@test UniformScaling(4.32) ≈ 4.3 * [1 0; 0 1] rtol=0.1 atol=0.01 norm=norm
@test 4.3 * [1 0; 0 1] ≈ UniformScaling(4.32) rtol=0.1 atol=0.01
@test [4.3201 0.002;0.001 4.32009] ≈ UniformScaling(4.32) rtol=0.1 atol=0.
@test UniformScaling(4.32) ≉ fill(4.3,2,2) rtol=0.1 atol=0.01
@test UniformScaling(4.32) ≈ 4.32 * [1 0; 0 1]
end
@testset "arithmetic with Number" begin
α = randn()
@test α + I == α + 1
@test I + α == α + 1
@test α - I == α - 1
@test I - α == 1 - α
@test α .* UniformScaling(1.0) == UniformScaling(1.0) .* α
@test UniformScaling(α)./α == UniformScaling(1.0)
@test α * UniformScaling(1.0) == UniformScaling(1.0) * α
@test UniformScaling(α)/α == UniformScaling(1.0)
end
@testset "det and logdet" begin
@test det(I) === true
@test det(1.0I) === 1.0
@test det(0I) === 0
@test det(0.0I) === 0.0
@test logdet(I) == 0
@test_throws ArgumentError det(2I)
end
@test copy(UniformScaling(one(Float64))) == UniformScaling(one(Float64))
@test sprint(show,UniformScaling(one(ComplexF64))) == "LinearAlgebra.UniformScaling{Complex{Float64}}\n(1.0 + 0.0im)*I"
@test sprint(show,UniformScaling(one(Float32))) == "LinearAlgebra.UniformScaling{Float32}\n1.0*I"
let
λ = complex(randn(),randn())
J = UniformScaling(λ)
@testset "transpose, conj, inv" begin
@test ndims(J) == 2
@test transpose(J) == J
@test J * [1 0; 0 1] == conj(*(adjoint(J), [1 0; 0 1])) # ctranpose (and A(c)_mul_B)
@test I + I === UniformScaling(2) # +
@test inv(I) == I
@test inv(J) == UniformScaling(inv(λ))
@test cond(I) == 1
@test cond(J) == (λ ≠ zero(λ) ? one(real(λ)) : oftype(real(λ), Inf))
end
@testset "copyto!" begin
A = Matrix{Int}(undef, (3,3))
@test copyto!(A, I) == one(A)
B = Matrix{ComplexF64}(undef, (1,2))
@test copyto!(B, J) == [λ zero(λ)]
end
@testset "binary ops with matrices" begin
B = bitrand(2, 2)
@test B + I == B + Matrix(I, size(B))
@test I + B == B + Matrix(I, size(B))
AA = randn(2, 2)
for SS in (sprandn(3,3, 0.5), sparse(Int(1)I, 3, 3))
for (A, S) in ((AA, SS), (view(AA, 1:2, 1:2), view(SS, 1:3, 1:3)))
I22 = Matrix(I, size(A))
@test @inferred(A + I) == A + I22
@test @inferred(I + A) == A + I22
@test @inferred(I - I) === UniformScaling(0)
@test @inferred(B - I) == B - I22
@test @inferred(I - B) == I22 - B
@test @inferred(A - I) == A - I22
@test @inferred(I - A) == I22 - A
@test @inferred(I*J) === UniformScaling(λ)
@test @inferred(B*J) == B*λ
@test @inferred(J*B) == B*λ
@test @inferred(I*A) !== A # Don't alias
@test @inferred(I*S) !== S # Don't alias
@test @inferred(A*I) !== A # Don't alias
@test @inferred(S*I) !== S # Don't alias
@test @inferred(S*J) == S*λ
@test @inferred(J*S) == S*λ
@test @inferred(A*J) == A*λ
@test @inferred(J*A) == A*λ
@test @inferred(J*fill(1, 3)) == fill(λ, 3)
@test @inferred(λ*J) === UniformScaling(λ*J.λ)
@test @inferred(J*λ) === UniformScaling(λ*J.λ)
@test @inferred(J/I) === J
@test @inferred(I/A) == inv(A)
@test @inferred(A/I) == A
@test @inferred(I/λ) === UniformScaling(1/λ)
@test @inferred(I\J) === J
if isa(A, Array)
T = LowerTriangular(randn(3,3))
else
T = LowerTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
if isa(A, Array)
T = LinearAlgebra.UnitLowerTriangular(randn(3,3))
else
T = LinearAlgebra.UnitLowerTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
if isa(A, Array)
T = UpperTriangular(randn(3,3))
else
T = UpperTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
if isa(A, Array)
T = LinearAlgebra.UnitUpperTriangular(randn(3,3))
else
T = LinearAlgebra.UnitUpperTriangular(view(randn(3,3), 1:3, 1:3))
end
@test @inferred(T + J) == Array(T) + J
@test @inferred(J + T) == J + Array(T)
@test @inferred(T - J) == Array(T) - J
@test @inferred(J - T) == J - Array(T)
@test @inferred(T\I) == inv(T)
@test @inferred(I\A) == A
@test @inferred(A\I) == inv(A)
@test @inferred(λ\I) === UniformScaling(1/λ)
end
end
end
end
@testset "hcat and vcat" begin
@test_throws ArgumentError hcat(I)
@test_throws ArgumentError [I I]
@test_throws ArgumentError vcat(I)
@test_throws ArgumentError [I; I]
@test_throws ArgumentError [I I; I]
for T in (Matrix, SparseMatrixCSC)
A = T(rand(3,4))
B = T(rand(3,3))
@test (hcat(A, 2I))::T == hcat(A, Matrix(2I, 3, 3))
@test (vcat(A, 2I))::T == vcat(A, Matrix(2I, 4, 4))
@test (hcat(I, 3I, A, 2I))::T == hcat(Matrix(I, 3, 3), Matrix(3I, 3, 3), A, Matrix(2I, 3, 3))
@test (vcat(I, 3I, A, 2I))::T == vcat(Matrix(I, 4, 4), Matrix(3I, 4, 4), A, Matrix(2I, 4, 4))
@test (hvcat((2,1,2), B, 2I, I, 3I, 4I))::T ==
hvcat((2,1,2), B, Matrix(2I, 3, 3), Matrix(I, 6, 6), Matrix(3I, 3, 3), Matrix(4I, 3, 3))
end
end
@testset "Matrix/Array construction from UniformScaling" begin
I2_33 = [2 0 0; 0 2 0; 0 0 2]
I2_34 = [2 0 0 0; 0 2 0 0; 0 0 2 0]
I2_43 = [2 0 0; 0 2 0; 0 0 2; 0 0 0]
for ArrType in (Matrix, Array)
@test ArrType(2I, 3, 3)::Matrix{Int} == I2_33
@test ArrType(2I, 3, 4)::Matrix{Int} == I2_34
@test ArrType(2I, 4, 3)::Matrix{Int} == I2_43
@test ArrType(2.0I, 3, 3)::Matrix{Float64} == I2_33
@test ArrType{Real}(2I, 3, 3)::Matrix{Real} == I2_33
@test ArrType{Float64}(2I, 3, 3)::Matrix{Float64} == I2_33
end
end
@testset "Diagonal construction from UniformScaling" begin
@test Diagonal(2I, 3)::Diagonal{Int} == Matrix(2I, 3, 3)
@test Diagonal(2.0I, 3)::Diagonal{Float64} == Matrix(2I, 3, 3)
@test Diagonal{Real}(2I, 3)::Diagonal{Real} == Matrix(2I, 3, 3)
@test Diagonal{Float64}(2I, 3)::Diagonal{Float64} == Matrix(2I, 3, 3)
end
@testset "equality comparison of matrices with UniformScaling" begin
# AbstractMatrix methods
diagI = Diagonal(fill(1, 3))
rdiagI = view(diagI, 1:2, 1:3)
bidiag = Bidiagonal(fill(2, 3), fill(2, 2), :U)
@test diagI == I == diagI # test isone(I) path / equality
@test 2diagI != I != 2diagI # test isone(I) path / inequality
@test 0diagI == 0I == 0diagI # test iszero(I) path / equality
@test 2diagI != 0I != 2diagI # test iszero(I) path / inequality
@test 2diagI == 2I == 2diagI # test generic path / equality
@test 0diagI != 2I != 0diagI # test generic path / inequality on diag
@test bidiag != 2I != bidiag # test generic path / inequality off diag
@test rdiagI != I != rdiagI # test square matrix check
# StridedMatrix specialization
denseI = [1 0 0; 0 1 0; 0 0 1]
rdenseI = [1 0 0 0; 0 1 0 0; 0 0 1 0]
alltwos = fill(2, (3, 3))
@test denseI == I == denseI # test isone(I) path / equality
@test 2denseI != I != 2denseI # test isone(I) path / inequality
@test 0denseI == 0I == 0denseI # test iszero(I) path / equality
@test 2denseI != 0I != 2denseI # test iszero(I) path / inequality
@test 2denseI == 2I == 2denseI # test generic path / equality
@test 0denseI != 2I != 0denseI # test generic path / inequality on diag
@test alltwos != 2I != alltwos # test generic path / inequality off diag
@test rdenseI != I != rdenseI # test square matrix check
end
@testset "operations involving I should preserve eltype" begin
@test isa(Int8(1) + I, Int8)
@test isa(Float16(1) + I, Float16)
@test eltype(Int8(1)I) == Int8
@test eltype(Float16(1)I) == Float16
@test eltype(fill(Int8(1), 2, 2)I) == Int8
@test eltype(fill(Float16(1), 2, 2)I) == Float16
@test eltype(fill(Int8(1), 2, 2) + I) == Int8
@test eltype(fill(Float16(1), 2, 2) + I) == Float16
end
@testset "test that UniformScaling is applied correctly for matrices of matrices" begin
LL = Bidiagonal(fill(0*I, 3), fill(1*I, 2), :L)
@test (I - LL')\[[0], [0], [1]] == (I - LL)'\[[0], [0], [1]] == fill([1], 3)
end
# Ensure broadcasting of I is an error (could be made to work in the future)
@testset "broadcasting of I (#23197)" begin
@test_throws MethodError I .+ 1
@test_throws MethodError I .+ [1 1; 1 1]
end
end # module TestUniformscaling