forked from Project-MONAI/MONAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_hilbert_transform.py
209 lines (172 loc) · 7.31 KB
/
test_hilbert_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
import numpy as np
import torch
from parameterized import parameterized
from monai.networks.layers import HilbertTransform
from monai.utils import OptionalImportError
from tests.utils import SkipIfModule, SkipIfNoModule, skip_if_no_cuda
def create_expected_numpy_output(input_datum, **kwargs):
x = np.fft.fft(input_datum.cpu().numpy() if input_datum.device.type == "cuda" else input_datum.numpy(), **kwargs)
f = np.fft.fftfreq(x.shape[kwargs["axis"]])
u = np.heaviside(f, 0.5)
new_dims_before = kwargs["axis"]
new_dims_after = len(x.shape) - kwargs["axis"] - 1
for _ in range(new_dims_before):
u = np.expand_dims(u, 0)
for _ in range(new_dims_after):
u = np.expand_dims(u, -1)
ht = np.fft.ifft(x * 2 * u, axis=kwargs["axis"])
return ht
cpu = torch.device("cpu")
n_samples = 500
hann_windowed_sine = np.sin(2 * np.pi * 10 * np.linspace(0, 1, n_samples)) * np.hanning(n_samples)
# CPU TEST DATA
cpu_input_data = {}
cpu_input_data["1D"] = torch.as_tensor(hann_windowed_sine, device=cpu).unsqueeze(0).unsqueeze(0)
cpu_input_data["2D"] = (
torch.as_tensor(np.stack([hann_windowed_sine] * 10, axis=1), device=cpu).unsqueeze(0).unsqueeze(0)
)
cpu_input_data["3D"] = (
torch.as_tensor(np.stack([np.stack([hann_windowed_sine] * 10, axis=1)] * 10, axis=2), device=cpu)
.unsqueeze(0)
.unsqueeze(0)
)
cpu_input_data["1D 2CH"] = torch.as_tensor(np.stack([hann_windowed_sine] * 10, axis=1), device=cpu).unsqueeze(0)
cpu_input_data["2D 2CH"] = torch.as_tensor(
np.stack([np.stack([hann_windowed_sine] * 10, axis=1)] * 10, axis=2), device=cpu
).unsqueeze(0)
# SINGLE-CHANNEL CPU VALUE TESTS
TEST_CASE_1D_SINE_CPU = [
{}, # args (empty, so use default)
cpu_input_data["1D"], # Input data: Random 1D signal
create_expected_numpy_output(cpu_input_data["1D"], axis=2), # Expected output: FFT of signal
1e-5, # absolute tolerance
]
TEST_CASE_2D_SINE_CPU = [
{}, # args (empty, so use default)
cpu_input_data["2D"], # Input data: Random 1D signal
create_expected_numpy_output(cpu_input_data["2D"], axis=2), # Expected output: FFT of signal
1e-5, # absolute tolerance
]
TEST_CASE_3D_SINE_CPU = [
{}, # args (empty, so use default)
cpu_input_data["3D"], # Input data: Random 1D signal
create_expected_numpy_output(cpu_input_data["3D"], axis=2),
1e-5, # absolute tolerance
]
# MULTICHANNEL CPU VALUE TESTS, PROCESS ALONG FIRST SPATIAL AXIS
TEST_CASE_1D_2CH_SINE_CPU = [
{}, # args (empty, so use default)
cpu_input_data["1D 2CH"], # Input data: Random 1D signal
create_expected_numpy_output(cpu_input_data["1D 2CH"], axis=2),
1e-5, # absolute tolerance
]
TEST_CASE_2D_2CH_SINE_CPU = [
{}, # args (empty, so use default)
cpu_input_data["2D 2CH"], # Input data: Random 1D signal
create_expected_numpy_output(cpu_input_data["2D 2CH"], axis=2),
1e-5, # absolute tolerance
]
# GPU TEST DATA
if torch.cuda.is_available():
gpu = torch.device("cuda")
gpu_input_data = {}
gpu_input_data["1D"] = torch.as_tensor(hann_windowed_sine, device=gpu).unsqueeze(0).unsqueeze(0)
gpu_input_data["2D"] = (
torch.as_tensor(np.stack([hann_windowed_sine] * 10, axis=1), device=gpu).unsqueeze(0).unsqueeze(0)
)
gpu_input_data["3D"] = (
torch.as_tensor(np.stack([np.stack([hann_windowed_sine] * 10, axis=1)] * 10, axis=2), device=gpu)
.unsqueeze(0)
.unsqueeze(0)
)
gpu_input_data["1D 2CH"] = torch.as_tensor(np.stack([hann_windowed_sine] * 10, axis=1), device=gpu).unsqueeze(0)
gpu_input_data["2D 2CH"] = torch.as_tensor(
np.stack([np.stack([hann_windowed_sine] * 10, axis=1)] * 10, axis=2), device=gpu
).unsqueeze(0)
# SINGLE CHANNEL GPU VALUE TESTS
TEST_CASE_1D_SINE_GPU = [
{}, # args (empty, so use default)
gpu_input_data["1D"], # Input data: Random 1D signal
create_expected_numpy_output(gpu_input_data["1D"], axis=2), # Expected output: FFT of signal
1e-5, # absolute tolerance
]
TEST_CASE_2D_SINE_GPU = [
{}, # args (empty, so use default)
gpu_input_data["2D"], # Input data: Random 1D signal
create_expected_numpy_output(gpu_input_data["2D"], axis=2), # Expected output: FFT of signal
1e-5, # absolute tolerance
]
TEST_CASE_3D_SINE_GPU = [
{}, # args (empty, so use default)
gpu_input_data["3D"], # Input data: Random 1D signal
create_expected_numpy_output(gpu_input_data["3D"], axis=2), # Expected output: FFT of signal
1e-5, # absolute tolerance
]
# MULTICHANNEL GPU VALUE TESTS, PROCESS ALONG FIRST SPATIAL AXIS
TEST_CASE_1D_2CH_SINE_GPU = [
{}, # args (empty, so use default)
gpu_input_data["1D 2CH"], # Input data: Random 1D signal
create_expected_numpy_output(gpu_input_data["1D 2CH"], axis=2),
1e-5, # absolute tolerance
]
TEST_CASE_2D_2CH_SINE_GPU = [
{}, # args (empty, so use default)
gpu_input_data["2D 2CH"], # Input data: Random 1D signal
create_expected_numpy_output(gpu_input_data["2D 2CH"], axis=2),
1e-5, # absolute tolerance
]
# TESTS CHECKING PADDING, AXIS SELECTION ETC ARE COVERED BY test_detect_envelope.py
@SkipIfNoModule("torch.fft")
class TestHilbertTransformCPU(unittest.TestCase):
@parameterized.expand(
[
TEST_CASE_1D_SINE_CPU,
TEST_CASE_2D_SINE_CPU,
TEST_CASE_3D_SINE_CPU,
TEST_CASE_1D_2CH_SINE_CPU,
TEST_CASE_2D_2CH_SINE_CPU,
]
)
def test_value(self, arguments, image, expected_data, atol):
result = HilbertTransform(**arguments)(image)
result = result.squeeze(0).squeeze(0).numpy()
np.testing.assert_allclose(result, expected_data.squeeze(), atol=atol)
@skip_if_no_cuda
@SkipIfNoModule("torch.fft")
class TestHilbertTransformGPU(unittest.TestCase):
@parameterized.expand(
(
[]
if not torch.cuda.is_available()
else [
TEST_CASE_1D_SINE_GPU,
TEST_CASE_2D_SINE_GPU,
TEST_CASE_3D_SINE_GPU,
TEST_CASE_1D_2CH_SINE_GPU,
TEST_CASE_2D_2CH_SINE_GPU,
]
),
skip_on_empty=True,
)
def test_value(self, arguments, image, expected_data, atol):
result = HilbertTransform(**arguments)(image)
result = result.squeeze(0).squeeze(0).cpu().numpy()
np.testing.assert_allclose(result, expected_data.squeeze(), atol=atol)
@SkipIfModule("torch.fft")
class TestHilbertTransformNoFFTMod(unittest.TestCase):
def test_no_fft_module_error(self):
self.assertRaises(OptionalImportError, HilbertTransform(), torch.randn(1, 1, 10))
if __name__ == "__main__":
unittest.main()