Skip to content

Commit 07b8425

Browse files
committed
update
1 parent 6bd1a8a commit 07b8425

File tree

1 file changed

+90
-0
lines changed

1 file changed

+90
-0
lines changed

nerualnet.py

+90
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,90 @@
1+
import pandas as pd
2+
import numpy as np
3+
from sklearn.tree import DecisionTreeRegressor
4+
from sklearn.ensemble import RandomForestRegressor
5+
import xgboost as xgb
6+
import lightgbm as lgb
7+
from sklearn.metrics import r2_score
8+
from sklearn.model_selection import train_test_split
9+
import matplotlib.pyplot as plt
10+
11+
# 加载数据
12+
file_path = 'Minlost.csv' # 请确保文件路径正确
13+
df = pd.read_csv(file_path)
14+
15+
# 初始化结果存储
16+
r2_scores = {"DecisionTree": [], "RandomForest": [], "XGBoost": [], "LightGBM": []}
17+
18+
# 遍历每个站点进行训练和预测
19+
grouped = df.groupby("PortID")
20+
for port_id, group in grouped:
21+
print(f"Training for PortID {port_id}...")
22+
23+
# 准备数据
24+
X = group[['Available bikes']].values
25+
y = group['機会損失'].values
26+
27+
# 数据分割
28+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
29+
30+
# 决策树模型
31+
dt_model = DecisionTreeRegressor(random_state=42)
32+
dt_model.fit(X_train, y_train)
33+
dt_y_pred = dt_model.predict(X_test)
34+
dt_r2 = r2_score(y_test, dt_y_pred)
35+
r2_scores["DecisionTree"].append((port_id, dt_r2))
36+
37+
# 随机森林模型
38+
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
39+
rf_model.fit(X_train, y_train)
40+
rf_y_pred = rf_model.predict(X_test)
41+
rf_r2 = r2_score(y_test, rf_y_pred)
42+
r2_scores["RandomForest"].append((port_id, rf_r2))
43+
44+
# XGBoost 模型
45+
xgb_model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100, random_state=42)
46+
xgb_model.fit(X_train, y_train)
47+
xgb_y_pred = xgb_model.predict(X_test)
48+
xgb_r2 = r2_score(y_test, xgb_y_pred)
49+
r2_scores["XGBoost"].append((port_id, xgb_r2))
50+
51+
# LightGBM 模型
52+
lgb_model = lgb.LGBMRegressor(n_estimators=100, random_state=42)
53+
lgb_model.fit(X_train, y_train)
54+
lgb_y_pred = lgb_model.predict(X_test)
55+
lgb_r2 = r2_score(y_test, lgb_y_pred)
56+
r2_scores["LightGBM"].append((port_id, lgb_r2))
57+
58+
print(f"PortID {port_id} R² (DecisionTree): {dt_r2:.2f}")
59+
print(f"PortID {port_id} R² (RandomForest): {rf_r2:.2f}")
60+
print(f"PortID {port_id} R² (XGBoost): {xgb_r2:.2f}")
61+
print(f"PortID {port_id} R² (LightGBM): {lgb_r2:.2f}")
62+
63+
# 转换 R² 结果为 DataFrame
64+
dt_scores_df = pd.DataFrame(r2_scores["DecisionTree"], columns=["PortID", "R2"])
65+
rf_scores_df = pd.DataFrame(r2_scores["RandomForest"], columns=["PortID", "R2"])
66+
xgb_scores_df = pd.DataFrame(r2_scores["XGBoost"], columns=["PortID", "R2"])
67+
lgb_scores_df = pd.DataFrame(r2_scores["LightGBM"], columns=["PortID", "R2"])
68+
69+
# 可视化 R² 分数
70+
plt.figure(figsize=(15, 10))
71+
models = ["DecisionTree", "RandomForest", "XGBoost", "LightGBM"]
72+
colors = ["skyblue", "orange", "green", "purple"]
73+
for i, (model, color) in enumerate(zip(models, colors)):
74+
scores_df = pd.DataFrame(r2_scores[model], columns=["PortID", "R2"])
75+
plt.bar(
76+
[x + i * 0.2 for x in range(len(scores_df))], # 设置偏移量以避免柱状图重叠
77+
scores_df["R2"],
78+
width=0.2,
79+
label=model,
80+
color=color,
81+
align="center"
82+
)
83+
84+
plt.xlabel("PortID")
85+
plt.ylabel("R² Score")
86+
plt.title("R² Scores for Each PortID by Model")
87+
plt.legend()
88+
plt.xticks(rotation=90)
89+
plt.tight_layout()
90+
plt.show()

0 commit comments

Comments
 (0)