-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathwrapper.py
721 lines (594 loc) · 25.5 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
from models.ChIRoNet.embedding_functions import embedConformerWithAllPaths
import math
import os
import pandas as pd
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import RDLogger
import torch
from torch_geometric.data import InMemoryDataset, Data
from torch_geometric.data.collate import collate
from torch_geometric.utils import degree
from tqdm import tqdm
import numpy as np
import rdkit
import rdkit.Chem.EState as EState
import rdkit.Chem.rdMolDescriptors as rdMolDescriptors
import rdkit.Chem.rdPartialCharges as rdPartialCharges
pattern_dict = {'[NH-]': '[N-]', '[OH2+]':'[O]'}
def smiles_cleaner(smiles):
'''
This function is to clean smiles for some known issues that makes
rdkit:Chem.MolFromSmiles not working
'''
print('fixing smiles for rdkit...')
new_smiles = smiles
for pattern, replace_value in pattern_dict.items():
if pattern in smiles:
print('found pattern and fixed the smiles!')
new_smiles = smiles.replace(pattern, replace_value)
return new_smiles
def one_hot_vector(val, lst):
'''
Converts a value to a one-hot vector based on options in lst
'''
if val not in lst:
val = lst[-1]
return map(lambda x: x == val, lst)
def get_atom_rep(atom):
features = []
# H, C, N, O, F, Si, P, S, Cl, Br, I, other
features += one_hot_vector(atom.GetAtomicNum(), [1, 6, 7, 8, 9, 14, 15, 16, 17, 35, 53, 999])
features += one_hot_vector(len(atom.GetNeighbors()), list(range(1, 5)))
features.append(atom.GetFormalCharge())
features.append(atom.IsInRing())
features.append(atom.GetIsAromatic())
features.append(atom.GetExplicitValence())
features.append(atom.GetMass())
# Add Gasteiger charge and set to 0 if it is NaN or Infinite
gasteiger_charge = float(atom.GetProp('_GasteigerCharge'))
if math.isnan(gasteiger_charge) or math.isinf(gasteiger_charge):
gasteiger_charge = 0
features.append(gasteiger_charge)
# Add Gasteiger H charge and set to 0 if it is NaN or Infinite
gasteiger_h_charge = float(atom.GetProp('_GasteigerHCharge'))
if math.isnan(gasteiger_h_charge) or math.isinf(gasteiger_h_charge):
gasteiger_h_charge = 0
features.append(gasteiger_h_charge)
return features
def get_extra_atom_feature(all_atom_features, mol):
'''
Get more atom features that cannot be calculated only with atom,
but also with mol
:param all_atom_features:
:param mol:
:return:
'''
# Crippen has two parts: first is logP, second is Molar Refactivity(MR)
all_atom_crippen = rdMolDescriptors._CalcCrippenContribs(mol)
all_atom_TPSA_contrib = rdMolDescriptors._CalcTPSAContribs(mol)
all_atom_ASA_contrib = rdMolDescriptors._CalcLabuteASAContribs(mol)[0]
all_atom_EState = EState.EStateIndices(mol)
new_all_atom_features = []
for atom_id, feature in enumerate(all_atom_features):
crippen_logP = all_atom_crippen[atom_id][0]
crippen_MR = all_atom_crippen[atom_id][1]
atom_TPSA_contrib = all_atom_TPSA_contrib[atom_id]
atom_ASA_contrib = all_atom_ASA_contrib[atom_id]
atom_EState = all_atom_EState[atom_id]
feature.append(crippen_logP)
feature.append(crippen_MR)
feature.append(atom_TPSA_contrib)
feature.append(atom_ASA_contrib)
feature.append(atom_EState)
new_all_atom_features.append(feature)
return new_all_atom_features
def mol2graph(mol, D=3):
try:
conf = mol.GetConformer()
except Exception as e:
smiles = AllChem.MolToSmiles(mol)
print(f'smiles:{smiles} error message:{e}')
atom_pos = []
atomic_num_list = []
all_atom_features = []
# Get atom attributes and positions
rdPartialCharges.ComputeGasteigerCharges(mol)
for i, atom in enumerate(mol.GetAtoms()):
atomic_num = atom.GetAtomicNum()
atomic_num_list.append(atomic_num)
atom_feature = get_atom_rep(atom)
if D == 2:
atom_pos.append(
[conf.GetAtomPosition(i).x, conf.GetAtomPosition(i).y])
elif D == 3:
atom_pos.append([conf.GetAtomPosition(
i).x, conf.GetAtomPosition(i).y,
conf.GetAtomPosition(i).z])
all_atom_features.append(atom_feature)
# Add extra features that are needs to calculate using mol
all_atom_features = get_extra_atom_feature(all_atom_features, mol)
# Get bond attributes
edge_list = []
edge_attr_list = []
for idx, bond in enumerate(mol.GetBonds()):
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
bond_attr = []
bond_attr += one_hot_vector(
bond.GetBondTypeAsDouble(),
[1.0, 1.5, 2.0, 3.0]
)
is_aromatic = bond.GetIsAromatic()
is_conjugate = bond.GetIsConjugated()
is_in_ring = bond.IsInRing()
bond_attr.append(is_aromatic)
bond_attr.append(is_conjugate)
bond_attr.append(is_in_ring)
edge_list.append((i, j))
edge_attr_list.append(bond_attr)
edge_list.append((j, i))
edge_attr_list.append(bond_attr)
x = torch.tensor(all_atom_features, dtype=torch.float32)
p = torch.tensor(atom_pos, dtype=torch.float32)
edge_index = torch.tensor(edge_list).t().contiguous()
edge_attr = torch.tensor(edge_attr_list, dtype=torch.float32)
atomic_num = torch.tensor(atomic_num_list, dtype=torch.int)
data = Data(x=x, p=p, edge_index=edge_index,
edge_attr=edge_attr, atomic_num=atomic_num) # , adj=adj,
return data
def smiles2graph(D, smiles):
if D == None:
raise Exception(
'smiles2grpah() needs to input D to specifiy 2D or 3D graph '
'generation.')
smiles = smiles.replace(r'/=', '=')
smiles = smiles.replace(r'\=', '=')
try:
mol = Chem.MolFromSmiles(smiles, sanitize=True)
except Exception as e:
print(f'Cannot generate mol, error:{e}, smiles:{smiles}')
if mol is None:
smiles = smiles_cleaner(smiles)
try:
mol = Chem.MolFromSmiles(smiles, sanitize=True)
except Exception as e:
print(f'Generated mol is None, error:{e}, smiles:{smiles}')
return None
if mol is None:
print(f'Generated mol is still None after cleaning, smiles'
f':{smiles}')
try:
mol = Chem.AddHs(mol)
except Exception as e:
print(f'error in adding Hs{e}, smiles:{smiles}')
if D == 2:
Chem.rdDepictor.Compute2DCoords(mol)
if D == 3:
AllChem.EmbedMolecule(mol, useRandomCoords=True)
try:
AllChem.UFFOptimizeMolecule(mol)
except Exception as e:
print(f'smiles:{smiles} error message:{e}')
data = mol2graph(mol)
return data
def process_smiles(dataset, root, D):
data_smiles_list = []
data_list = []
for file, label in [(f'{dataset}_actives.smi', 1),
(f'{dataset}_inactives.smi', 0)]:
smiles_path = os.path.join(root, 'raw', file)
smiles_list = pd.read_csv(
smiles_path, sep='\t', header=None)[0]
# Only get first N data, just for debugging
smiles_list = smiles_list
for i in tqdm(range(len(smiles_list)), desc=f'{file}'):
smi = smiles_list[i]
data = smiles2graph(D, smi)
if data is None:
continue
data.idx = i
data.y = torch.tensor([label], dtype=torch.int)
data.smiles = smi
data_list.append(data)
data_smiles_list.append(smiles_list[i])
return data_list, data_smiles_list
def convert_to_single_emb(x, offset=512):
feature_num = x.size(1) if len(x.size()) > 1 else 1
feature_offset = 1 + \
torch.arange(0, feature_num * offset, offset,
dtype=torch.long)
x = x + feature_offset
return x
class D4DCHPDataset(InMemoryDataset):
"""
Dataset from Langnajit Pattanaik et al., 2020, Message Passing Networks
for Molecules with Tetrahedral Chirality
The dataset itself is a subset of the screening result for the protein
protein-ligand docking for D4 dopamine receptor that only keeps
stereoisomer pairs for a single 1,3-dicyclohexylpropane skeletal scaffold.
There are totally 287,468 molecules in D4DCHP, with two subsets in this
dataset, DIFF5 and DHIRAL1. DIFF5 has 119,166 molecules and contains
enantiomers exhibiting docking score >5kcal/mol;CHIRAL1 has 204,778
molecules and contains molecules having a single tetrahedral center.
"""
def __init__(self,
root,
subset_name,
data_file,
label_column_name,
idx_file,
D,
transform=None,
pre_transform=None,
pre_filter=None,
):
"""
:param subset_name: a string. Values can be "FULL", "CHIRAL4" or
"DIFF5"
:param data_file: a file containing SMILES. File format: .csv file
with headers; two columns with the first header being 'smiles' and the
second one having a column name specifed by param label_column_name
:param label_column_name: a string of the column name for the label.
e.g., "docking_score"
:param split_idx: a file specifying the split indices of samples in
data_file. File format: a .npy file that should be loaded with
numpy.load('split_idx.npy', allow_pickle=True). After loading,
it's a list of 3 items. Training indices are stored as 0th item,
and validation, test are stored as 1st and 2nd items respectively.
:param D: a integer being either 2 or 3, meaning the dimension
"""
self.root = root
print(f'root:{root}')
self.subset_name = subset_name
self.data_file = data_file
self.label_column_name = label_column_name
self.idx_file = idx_file
self.D = D
super(D4DCHPDataset, self).__init__(root, transform, pre_transform,
pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def processed_file_names(self):
return f'shrink_{self.subset_name}.pt'
def process(self):
data_smiles_list = []
data_list = []
data_df = pd.read_csv(self.data_file)
smiles_list = list(data_df['smiles'])
labels_list = list(data_df[self.label_column_name])
for i, smi in tqdm(enumerate(smiles_list)):
label = labels_list[i]
data = smiles2graph(self.D, smi)
if data is None:
continue
data.idx = i
data.y = torch.tensor([label], dtype=torch.float)
data.smiles = smi
data_list.append(data)
data_smiles_list.append(smiles_list[i])
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
print('doing pre_transforming...')
data_list = [self.pre_transform(data) for data in data_list]
# Write data_smiles_list in processed paths
data_smiles_series = pd.Series(data_smiles_list)
data_smiles_series.to_csv(os.path.join(
self.processed_dir, f'{self.subset_name}-smiles.csv'), index=False,
header=False)
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def get_idx_split(self):
indices = np.load(self.idx_file, allow_pickle=True)
train_indices = indices[0]
val_indices = indices[1]
test_indices = indices[2]
split_dict = {}
split_dict['train'] = train_indices
split_dict['valid'] = val_indices
split_dict['test'] = test_indices
return split_dict
class QSARDataset(InMemoryDataset):
"""
Dataset from Mariusz Butkiewics et al., 2013, Benchmarking ligand-based
virtual High_Throughput Screening with the PubChem Database
There are nine subsets in this dataset, identified by their summary assay
IDs (SAIDs):
435008, 1798, 435034, 1843, 2258, 463087, 488997,2689, 485290
The statistics of each subset can be found in the original publication
"""
def __init__(self,
root,
D=3,
transform=None,
pre_transform=None,
pre_filter=None,
dataset='435008',
empty=False,
gnn_type='kgnn'):
self.dataset = dataset
self.root = root
self.D = D
self.gnn_type = gnn_type
super(QSARDataset, self).__init__(root, transform, pre_transform,
pre_filter)
self.transform, self.pre_transform, self.pre_filter = transform, \
pre_transform, \
pre_filter
if not empty:
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
file_name_list = os.listdir(self.raw_dir)
return file_name_list
@property
def processed_file_names(self):
return f'{self.gnn_type}-{self.dataset}-{self.D}D.pt'
def download(self):
raise NotImplementedError('Must indicate valid location of raw data. '
'No download allowed')
def process(self):
print(f'processing dataset {self.dataset}')
if self.dataset not in ['435008', '1798', '435034', '1843', '2258',
'463087', '488997','2689', '485290','9999']:
raise ValueError('Invalid dataset name')
RDLogger.DisableLog('rdApp.*')
data_smiles_list = []
data_list = []
counter = -1
invalid_id_list = []
for file_name, label in [(f'{self.dataset}_actives_new.sdf', 1),
(f'{self.dataset}_inactives_new.sdf', 0)]:
sdf_path = os.path.join(self.root, 'raw', file_name)
sdf_supplier = Chem.SDMolSupplier(sdf_path)
for i, mol in tqdm(enumerate(sdf_supplier)):
counter+=1
if self.gnn_type == 'chironet':
data = self.chiro_process(mol)
elif self.gnn_type in ['dimenet_pp', 'schnet', 'spherenet']:
data = self.dimenetpp_process(mol)
else:
data = self.regular_process(mol)
if data is None:
invalid_id_list.append([counter, label])
continue
data.idx = counter
data.y = torch.tensor([label], dtype=torch.int)
if self.pre_filter is not None:
data = self.pre_filter(data)
if self.pre_transform is not None:
data = self.pre_transform(data)
smiles = AllChem.MolToSmiles(mol)
data.smiles = smiles
data_list.append(data)
data_smiles_list.append(smiles)
# Write data_smiles_list in processed paths
data_smiles_series = pd.Series(data_smiles_list)
data_smiles_series.to_csv(os.path.join(self.processed_dir, f'{self.gnn_type}-{self.dataset}-smiles.csv'),
index=False, header=False)
invalid_id_series = pd.DataFrame(invalid_id_list)
invalid_id_series.to_csv(os.path.join(self.processed_dir, f'{self.gnn_type}-{self.dataset}-invalid_id.csv'),
index=False,
header=False)
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def dimenetpp_process(self, mol):
conformer = mol.GetConformer()
adj = rdkit.Chem.GetAdjacencyMatrix(mol)
adj = np.triu(np.array(adj, dtype=int)) # keeping just upper triangular entries from sym matrix
array_adj = np.array(np.nonzero(adj), dtype=int) # indices of non-zero values in adj matrix
edge_index = np.zeros((2, 2 * array_adj.shape[1]), dtype=int) # placeholder for undirected edge list
edge_index[:, ::2] = array_adj
edge_index[:, 1::2] = np.flipud(array_adj)
atoms = rdkit.Chem.rdchem.Mol.GetAtoms(mol)
node_features = np.array(
[atom.GetAtomicNum() for atom in atoms]) # Z
positions = np.array(
[conformer.GetAtomPosition(atom.GetIdx()) for atom in atoms]) # xyz positions
edge_index, Z, pos = edge_index, node_features, positions
data = Data(
x=torch.as_tensor(Z).unsqueeze(1),
edge_index=torch.as_tensor(edge_index, dtype=torch.long))
data.pos = torch.as_tensor(pos, dtype=torch.float)
return data
def chiro_process(self, mol):
return_values = embedConformerWithAllPaths(mol, repeats=False)
if return_values is not None:
atom_symbols, edge_index, edge_features, node_features, \
bond_distances, bond_distance_index, bond_angles, \
bond_angle_index, dihedral_angles, dihedral_angle_index = return_values
else:
return
bond_angles = bond_angles % (2 * np.pi)
dihedral_angles = dihedral_angles % (2 * np.pi)
data = Data(
x=torch.as_tensor(node_features),
edge_index=torch.as_tensor(edge_index, dtype=torch.long),
edge_attr=torch.as_tensor(edge_features))
data.bond_distances = torch.as_tensor(bond_distances)
data.bond_distance_index = torch.as_tensor(bond_distance_index,
dtype=torch.long).T
data.bond_angles = torch.as_tensor(bond_angles)
data.bond_angle_index = torch.as_tensor(bond_angle_index,
dtype=torch.long).T
data.dihedral_angles = torch.as_tensor(dihedral_angles)
data.dihedral_angle_index = torch.as_tensor(
dihedral_angle_index, dtype=torch.long).T
return data
def regular_process(self, mol):
data = mol2graph(mol)
return data
def get_idx_split(self):
split_dict = torch.load(f'data_split/shrink_{self.dataset}_seed2.pt')
try:
invalid_id_list = pd.read_csv(os.path.join(self.processed_dir, f'{self.gnn_type}-'
f'{self.dataset}-invalid_id.csv')
, header=None).values.tolist()
for id, label in invalid_id_list:
print(f'checking invalid id {id}')
if label == 1:
print('====warning: a positive label is removed====')
if id in split_dict['train']:
split_dict['train'].remove(id)
print(f'found in train and removed')
if id in split_dict['valid']:
split_dict['valid'].remove(id)
print(f'found in valid and removed')
if id in split_dict['test']:
split_dict['test'].remove(id)
print(f'found in test and removed')
except:
print(f'invalid_id_list is empty')
return split_dict
def __getitem__(self, idx):
if isinstance(idx, int):
item = self.get(self.indices()[idx])
# item.idx = idx
return item
else:
return self.index_select(idx)
@staticmethod
def collate(data_list):
r"""Collates a Python list of :obj:`torch_geometric.data.Data` objects
to the internal storage format of
:class:`~torch_geometric.data.InMemoryDataset`."""
if len(data_list) == 1:
return data_list[0], None
data, slices, _ = collate(
data_list[0].__class__,
data_list=data_list,
increment=False,
add_batch=False,
)
return data, slices
class ToXAndPAndEdgeAttrForDeg(object):
'''
Calculate the focal index and neighbor indices for each degree and store
them in focal_index and nei_index.
Also calculate neighboring edge attr for each degree nei_edge_attr.
These operations are very expensive to run on the fly
'''
def get_neighbor_index(self, edge_index, center_index):
a = edge_index[0]
b = a.unsqueeze(1) == center_index
c = torch.nonzero(b)
d = c[:, 0]
return edge_index[1, d]
def get_degree_index(self, x, edge_index):
deg = degree(edge_index[0], x.shape[0])
return deg
def get_edge_attr_support_from_center_node(self, edge_attr, edge_index,
center_index):
a = edge_index[0]
b = a.unsqueeze(1) == center_index
c = torch.nonzero(b)
d = c[:, 0]
# Normalize bond id
e = (d / 2).long()
bond_id = torch.tensor([2 * x for x in e], device=a.device)
# Select bond attributes with the bond id
nei_edge_attr = torch.index_select(input=edge_attr, dim=0,
index=bond_id)
return nei_edge_attr
def convert_grpah_to_receptive_field_for_degN(self, deg, deg_index, data):
x = data.x
p = data.p
edge_index = data.edge_index
edge_attr = data.edge_attr
selected_index = focal_index = \
(deg_index == deg).nonzero(as_tuple=True)[0]
p_focal = torch.index_select(input=p, dim=0, index=focal_index)
num_focal = len(focal_index)
nei_index_list_each_node = []
nei_p_list_each_node = []
nei_edge_attr_list_each_node = []
for i in range(num_focal):
nei_index = self.get_neighbor_index(edge_index, focal_index[i])
nei_index_list_each_node.append(nei_index)
nei_p = torch.index_select(p, 0, nei_index)
nei_edge_attr = self.get_edge_attr_support_from_center_node(
edge_attr, edge_index, focal_index[i])
nei_p_list_each_node.append(nei_p)
nei_edge_attr_list_each_node.append(nei_edge_attr)
if num_focal != 0:
nei_index = torch.stack(nei_index_list_each_node, dim=0).reshape(
-1)
nei_p = torch.stack(nei_p_list_each_node, dim=0)
nei_edge_attr = torch.stack(nei_edge_attr_list_each_node, dim=0)
else:
nei_index = torch.Tensor()
nei_p = torch.Tensor()
nei_edge_attr = torch.Tensor()
nei_index = nei_index.to(torch.long)
return p_focal, nei_p, nei_edge_attr, \
selected_index, nei_index
def __call__(self, data):
deg_index = self.get_degree_index(data.x, data.edge_index)
data.p_focal_deg1 = data.p_focal_deg2 = data.p_focal_deg3 = \
data.p_focal_deg4 = None
data.nei_p_deg1 = data.nei_p_deg2 = data.nei_p_deg3 = \
data.nei_p_deg4 = None
data.nei_edge_attr_deg1 = data.nei_edge_attr_deg2 = \
data.nei_edge_attr_deg3 = data.nei_edge_attr_deg4 = None
deg = 1
data.p_focal_deg1, data.nei_p_deg1, data.nei_edge_attr_deg1, \
data.selected_index_deg1, data.nei_index_deg1 = \
self.convert_grpah_to_receptive_field_for_degN(
deg, deg_index, data)
deg = 2
data.p_focal_deg2, data.nei_p_deg2, data.nei_edge_attr_deg2,\
data.selected_index_deg2, data.nei_index_deg2 = \
self.convert_grpah_to_receptive_field_for_degN(
deg, deg_index, data)
deg = 3
data.p_focal_deg3, data.nei_p_deg3, data.nei_edge_attr_deg3, \
data.selected_index_deg3, data.nei_index_deg3 = \
self.convert_grpah_to_receptive_field_for_degN(
deg, deg_index, data)
deg = 4
data.p_focal_deg4, data.nei_p_deg4, data.nei_edge_attr_deg4, \
data.selected_index_deg4, data.nei_index_deg4 = \
self.convert_grpah_to_receptive_field_for_degN(
deg, deg_index, data)
return data
if __name__ == "__main__":
from clearml import Task
from argparse import ArgumentParser
gnn_type = 'kgnn'
# gnn_type = 'chironet'
# gnn_type = 'spherenet'
# gnn_type = 'schnet'
# gnn_type = 'dimenet_pp'
use_clearml = False
if use_clearml:
task = Task.init(project_name=f"DatasetCreation/kgnn",
task_name=f"{gnn_type}",
tags=[],
reuse_last_task_id=False
)
parser = ArgumentParser()
parser.add_argument('--dataset', type=str, default='1798')
parser.add_argument('--gnn_type', type=str, default=gnn_type)
parser.add_argument('--task_name', type=str, default='Unnamed')
args = parser.parse_args()
if use_clearml:
print(f'change_task_name...')
task.set_name(args.task_name)
print(f'===={gnn_type}====')
if gnn_type== 'kgnn':
transform = ToXAndPAndEdgeAttrForDeg()
else:
transform = None
qsar_dataset = QSARDataset(root='../dataset/qsar/clean_sdf',
dataset=args.dataset,
pre_transform=transform,
gnn_type=args.gnn_type
)
data = qsar_dataset[0]
print(f'data:{data}')
print('\n')
import sys
print(f'mem size:{sys.getsizeof(data) } bytes')
print(f'totl mem size = mem_size * 200k /1000 = '
f'{sys.getsizeof(data) * 200000/1000} MB')