|
| 1 | +import os |
| 2 | +from argparse import ArgumentParser |
| 3 | +from collections import OrderedDict |
| 4 | +from PIL import Image |
| 5 | + |
| 6 | +import numpy as np |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | +import torch.nn.functional as F |
| 10 | +import torchvision |
| 11 | +import torchvision.transforms as transforms |
| 12 | +from torch.utils.data import DataLoader, Dataset |
| 13 | +from torchvision.models.segmentation import fcn_resnet50 |
| 14 | + |
| 15 | +import pytorch_lightning as pl |
| 16 | + |
| 17 | + |
| 18 | +class KITTI(Dataset): |
| 19 | + ''' |
| 20 | + Dataset Class for KITTI Semantic Segmentation Benchmark dataset |
| 21 | + Dataset link - http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015 |
| 22 | +
|
| 23 | + There are 34 classes in the given labels. However, not all of them are useful for training |
| 24 | + (like railings on highways, road dividers, etc.). |
| 25 | + So, these useless classes (the pixel values of these classes) are stored in the `void_labels`. |
| 26 | + The useful classes are stored in the `valid_labels`. |
| 27 | +
|
| 28 | + The `encode_segmap` function sets all pixels with any of the `void_labels` to `ignore_index` |
| 29 | + (250 by default). It also sets all of the valid pixels to the appropriate value between 0 and |
| 30 | + `len(valid_labels)` (since that is the number of valid classes), so it can be used properly by |
| 31 | + the loss function when comparing with the output. |
| 32 | +
|
| 33 | + The `get_filenames` function retrieves the filenames of all images in the given `path` and |
| 34 | + saves the absolute path in a list. |
| 35 | +
|
| 36 | + In the `get_item` function, images and masks are resized to the given `img_size`, masks are |
| 37 | + encoded using `encode_segmap`, and given `transform` (if any) are applied to the image only |
| 38 | + (mask does not usually require transforms, but they can be implemented in a similar way). |
| 39 | + ''' |
| 40 | + def __init__( |
| 41 | + self, |
| 42 | + root_path, |
| 43 | + split='test', |
| 44 | + img_size=(1242, 376), |
| 45 | + void_labels=[0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1], |
| 46 | + valid_labels=[7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33], |
| 47 | + transform=None |
| 48 | + ): |
| 49 | + self.img_size = img_size |
| 50 | + self.void_labels = void_labels |
| 51 | + self.valid_labels = valid_labels |
| 52 | + self.ignore_index = 250 |
| 53 | + self.class_map = dict(zip(self.valid_labels, range(len(self.valid_labels)))) |
| 54 | + self.split = split |
| 55 | + self.root = root_path |
| 56 | + if self.split == 'train': |
| 57 | + self.img_path = os.path.join(self.root, 'training/image_2') |
| 58 | + self.mask_path = os.path.join(self.root, 'training/semantic') |
| 59 | + else: |
| 60 | + self.img_path = os.path.join(self.root, 'testing/image_2') |
| 61 | + self.mask_path = None |
| 62 | + |
| 63 | + self.transform = transform |
| 64 | + |
| 65 | + self.img_list = self.get_filenames(self.img_path) |
| 66 | + if self.split == 'train': |
| 67 | + self.mask_list = self.get_filenames(self.mask_path) |
| 68 | + else: |
| 69 | + self.mask_list = None |
| 70 | + |
| 71 | + def __len__(self): |
| 72 | + return(len(self.img_list)) |
| 73 | + |
| 74 | + def __getitem__(self, idx): |
| 75 | + img = Image.open(self.img_list[idx]) |
| 76 | + img = img.resize(self.img_size) |
| 77 | + img = np.array(img) |
| 78 | + |
| 79 | + if self.split == 'train': |
| 80 | + mask = Image.open(self.mask_list[idx]).convert('L') |
| 81 | + mask = mask.resize(self.img_size) |
| 82 | + mask = np.array(mask) |
| 83 | + mask = self.encode_segmap(mask) |
| 84 | + |
| 85 | + if self.transform: |
| 86 | + img = self.transform(img) |
| 87 | + |
| 88 | + if self.split == 'train': |
| 89 | + return img, mask |
| 90 | + else: |
| 91 | + return img |
| 92 | + |
| 93 | + def encode_segmap(self, mask): |
| 94 | + ''' |
| 95 | + Sets void classes to zero so they won't be considered for training |
| 96 | + ''' |
| 97 | + for voidc in self.void_labels: |
| 98 | + mask[mask == voidc] = self.ignore_index |
| 99 | + for validc in self.valid_labels: |
| 100 | + mask[mask == validc] = self.class_map[validc] |
| 101 | + return mask |
| 102 | + |
| 103 | + def get_filenames(self, path): |
| 104 | + ''' |
| 105 | + Returns a list of absolute paths to images inside given `path` |
| 106 | + ''' |
| 107 | + files_list = list() |
| 108 | + for filename in os.listdir(path): |
| 109 | + files_list.append(os.path.join(path, filename)) |
| 110 | + return files_list |
| 111 | + |
| 112 | + |
| 113 | +class SegModel(pl.LightningModule): |
| 114 | + ''' |
| 115 | + Semantic Segmentation Module |
| 116 | +
|
| 117 | + This is a basic semantic segmentation module implemented with Lightning. |
| 118 | + It uses CrossEntropyLoss as the default loss function. May be replaced with |
| 119 | + other loss functions as required. |
| 120 | + It is specific to KITTI dataset i.e. dataloaders are for KITTI |
| 121 | + and Normalize transform uses the mean and standard deviation of this dataset. |
| 122 | + It uses the FCN ResNet50 model as an example. |
| 123 | +
|
| 124 | + Adam optimizer is used along with Cosine Annealing learning rate scheduler. |
| 125 | + ''' |
| 126 | + def __init__(self, hparams): |
| 127 | + super(SegModel, self).__init__() |
| 128 | + self.root_path = hparams.root |
| 129 | + self.batch_size = hparams.batch_size |
| 130 | + self.learning_rate = hparams.lr |
| 131 | + self.net = torchvision.models.segmentation.fcn_resnet50(pretrained=False, |
| 132 | + progress=True, |
| 133 | + num_classes=19) |
| 134 | + self.transform = transforms.Compose([ |
| 135 | + transforms.ToTensor(), |
| 136 | + transforms.Normalize(mean=[0.35675976, 0.37380189, 0.3764753], |
| 137 | + std=[0.32064945, 0.32098866, 0.32325324]) |
| 138 | + ]) |
| 139 | + self.trainset = KITTI(self.root_path, split='train', transform=self.transform) |
| 140 | + self.testset = KITTI(self.root_path, split='test', transform=self.transform) |
| 141 | + |
| 142 | + def forward(self, x): |
| 143 | + return self.net(x) |
| 144 | + |
| 145 | + def training_step(self, batch, batch_nb): |
| 146 | + img, mask = batch |
| 147 | + img = img.float() |
| 148 | + mask = mask.long() |
| 149 | + out = self.forward(img) |
| 150 | + loss_val = F.cross_entropy(out['out'], mask, ignore_index=250) |
| 151 | + return {'loss': loss_val} |
| 152 | + |
| 153 | + def configure_optimizers(self): |
| 154 | + opt = torch.optim.Adam(self.net.parameters(), lr=self.learning_rate) |
| 155 | + sch = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=10) |
| 156 | + return [opt], [sch] |
| 157 | + |
| 158 | + def train_dataloader(self): |
| 159 | + return DataLoader(self.trainset, batch_size=self.batch_size, shuffle=True) |
| 160 | + |
| 161 | + def test_dataloader(self): |
| 162 | + return DataLoader(self.testset, batch_size=self.batch_size, shuffle=False) |
| 163 | + |
| 164 | + |
| 165 | +def main(hparams): |
| 166 | + # ------------------------ |
| 167 | + # 1 INIT LIGHTNING MODEL |
| 168 | + # ------------------------ |
| 169 | + model = SegModel(hparams) |
| 170 | + |
| 171 | + # ------------------------ |
| 172 | + # 2 INIT TRAINER |
| 173 | + # ------------------------ |
| 174 | + trainer = pl.Trainer( |
| 175 | + gpus=hparams.gpus |
| 176 | + ) |
| 177 | + |
| 178 | + # ------------------------ |
| 179 | + # 3 START TRAINING |
| 180 | + # ------------------------ |
| 181 | + trainer.fit(model) |
| 182 | + |
| 183 | + |
| 184 | +if __name__ == '__main__': |
| 185 | + parser = ArgumentParser() |
| 186 | + parser.add_argument("--root", type=str, help="path where dataset is stored") |
| 187 | + parser.add_argument("--gpus", type=int, help="number of available GPUs") |
| 188 | + parser.add_argument("--batch_size", type=int, default=4, help="size of the batches") |
| 189 | + parser.add_argument("--lr", type=float, default=0.001, help="adam: learning rate") |
| 190 | + |
| 191 | + hparams = parser.parse_args() |
| 192 | + |
| 193 | + main(hparams) |
0 commit comments