|
| 1 | +import torch |
| 2 | +import pytest |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +from pytorch_lightning import Trainer, seed_everything |
| 6 | + |
| 7 | +from pytorch_lightning.loggers import LightningLoggerBase |
| 8 | +from pytorch_lightning.utilities import rank_zero_only |
| 9 | + |
| 10 | +from tests.base import EvalModelTemplate |
| 11 | +from tests.base.utils import reset_seed |
| 12 | + |
| 13 | + |
| 14 | +class OnlyMetricsListLogger(LightningLoggerBase): |
| 15 | + def __init__(self): |
| 16 | + super().__init__() |
| 17 | + self.metrics = [] |
| 18 | + |
| 19 | + @rank_zero_only |
| 20 | + def log_metrics(self, metrics, step): |
| 21 | + self.metrics.append(metrics) |
| 22 | + |
| 23 | + @property |
| 24 | + def experiment(self): |
| 25 | + return 'test' |
| 26 | + |
| 27 | + @rank_zero_only |
| 28 | + def log_hyperparams(self, params): |
| 29 | + pass |
| 30 | + |
| 31 | + @rank_zero_only |
| 32 | + def finalize(self, status): |
| 33 | + pass |
| 34 | + |
| 35 | + @property |
| 36 | + def name(self): |
| 37 | + return 'name' |
| 38 | + |
| 39 | + @property |
| 40 | + def version(self): |
| 41 | + return '1' |
| 42 | + |
| 43 | + |
| 44 | +class ModelWithManualGradTracker(EvalModelTemplate): |
| 45 | + def __init__(self, norm_type, *args, **kwargs): |
| 46 | + super().__init__(*args, **kwargs) |
| 47 | + self.stored_grad_norms, self.norm_type = [], float(norm_type) |
| 48 | + |
| 49 | + # validation spoils logger's metrics with `val_loss` records |
| 50 | + validation_step = None |
| 51 | + val_dataloader = None |
| 52 | + |
| 53 | + def training_step(self, batch, batch_idx, optimizer_idx=None): |
| 54 | + # just return a loss, no log or progress bar meta |
| 55 | + x, y = batch |
| 56 | + loss_val = self.loss(y, self(x.flatten(1, -1))) |
| 57 | + return {'loss': loss_val} |
| 58 | + |
| 59 | + def on_after_backward(self): |
| 60 | + out, norms = {}, [] |
| 61 | + prefix = f'grad_{self.norm_type}_norm_' |
| 62 | + for name, p in self.named_parameters(): |
| 63 | + if p.grad is None: |
| 64 | + continue |
| 65 | + |
| 66 | + # `np.linalg.norm` implementation likely uses fp64 intermediates |
| 67 | + flat = p.grad.data.cpu().numpy().ravel() |
| 68 | + norm = np.linalg.norm(flat, self.norm_type) |
| 69 | + norms.append(norm) |
| 70 | + |
| 71 | + out[prefix + name] = round(norm, 3) |
| 72 | + |
| 73 | + # handle total norm |
| 74 | + norm = np.linalg.norm(norms, self.norm_type) |
| 75 | + out[prefix + 'total'] = round(norm, 3) |
| 76 | + self.stored_grad_norms.append(out) |
| 77 | + |
| 78 | + |
| 79 | +@pytest.mark.parametrize("norm_type", [1., 1.25, 1.5, 2, 3, 5, 10, 'inf']) |
| 80 | +def test_grad_tracking(tmpdir, norm_type, rtol=5e-3): |
| 81 | + # rtol=5e-3 respects the 3 decmials rounding in `.grad_norms` and above |
| 82 | + |
| 83 | + reset_seed() |
| 84 | + |
| 85 | + # use a custom grad tracking module and a list logger |
| 86 | + model = ModelWithManualGradTracker(norm_type) |
| 87 | + logger = OnlyMetricsListLogger() |
| 88 | + |
| 89 | + trainer = Trainer( |
| 90 | + max_epochs=3, |
| 91 | + logger=logger, |
| 92 | + track_grad_norm=norm_type, |
| 93 | + row_log_interval=1, # request grad_norms every batch |
| 94 | + ) |
| 95 | + result = trainer.fit(model) |
| 96 | + |
| 97 | + assert result == 1, "Training failed" |
| 98 | + assert len(logger.metrics) == len(model.stored_grad_norms) |
| 99 | + |
| 100 | + # compare the logged metrics against tracked norms on `.backward` |
| 101 | + for mod, log in zip(model.stored_grad_norms, logger.metrics): |
| 102 | + common = mod.keys() & log.keys() |
| 103 | + |
| 104 | + log, mod = [log[k] for k in common], [mod[k] for k in common] |
| 105 | + |
| 106 | + assert np.allclose(log, mod, rtol=rtol) |
0 commit comments