forked from jashwantraj92/cocktail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_client.py
executable file
·73 lines (55 loc) · 2.51 KB
/
resnet_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A client that performs inferences on a ResNet model using the REST API.
The client downloads a test image of a cat, queries the server over the REST API
with the test image repeatedly and measures how long it takes to respond.
The client expects a TensorFlow Serving ModelServer running a ResNet SavedModel
from:
https://github.com/tensorflow/models/tree/master/official/resnet#pre-trained-model
The SavedModel must be one that can take JPEG images as inputs.
Typical usage example:
resnet_client.py
"""
from __future__ import print_function
import base64
import requests
# The server URL specifies the endpoint of your server running the ResNet
# model with the name "resnet" and using the predict interface.
SERVER_URL = 'http://localhost:8501/v1/models/resnet:predict'
# The image URL is the location of the image we should send to the server
IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg'
def main():
# Download the image
dl_request = requests.get(IMAGE_URL, stream=True)
dl_request.raise_for_status()
# Compose a JSON Predict request (send JPEG image in base64).
jpeg_bytes = base64.b64encode(dl_request.content).decode('utf-8')
predict_request = '{"instances" : [{"b64": "%s"}]}' % jpeg_bytes
# Send few requests to warm-up the model.
for _ in range(3):
response = requests.post(SERVER_URL, data=predict_request)
response.raise_for_status()
# Send few actual requests and report average latency.
total_time = 0
num_requests = 10
for _ in range(num_requests):
response = requests.post(SERVER_URL, data=predict_request)
response.raise_for_status()
total_time += response.elapsed.total_seconds()
prediction = response.json()['predictions'][0]
print('Prediction class: {}, avg latency: {} ms'.format(
prediction['classes'], (total_time*1000)/num_requests))
if __name__ == '__main__':
main()