-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
413 lines (353 loc) · 20.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import ast
import logging
import sys
from timeit import default_timer as timer
from config import load_parameters
from data_engine.prepare_data import build_dataset
from keras_wrapper.cnn_model import loadModel, transferWeights, updateModel
from keras_wrapper.extra.callbacks import EvalPerformance, Sample
from keras_wrapper.extra.evaluation import selectMetric
from keras_wrapper.extra.read_write import dict2pkl, list2file
from keras_wrapper.utils import decode_predictions_beam_search, decode_predictions
from viddesc_model import VideoDesc_Model
logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s] %(message)s', datefmt='%d/%m/%Y %H:%M:%S')
logger = logging.getLogger(__name__)
def train_model(params):
"""
Training function. Sets the training parameters from params. Build or loads the model and launches the training.
:param params: Dictionary of network hyperparameters.
:return: None
"""
if params['RELOAD'] > 0:
logging.info('Resuming training.')
check_params(params)
########### Load data
dataset = build_dataset(params)
if not '-vidtext-embed' in params['DATASET_NAME']:
params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['OUTPUTS_IDS_DATASET'][0]]
else:
params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['INPUTS_IDS_DATASET'][1]]
###########
########### Build model
if params['MODE'] == 'finetuning':
# video_model = loadModel(params['PRE_TRAINED_MODEL_STORE_PATHS'], params['RELOAD'])
video_model = VideoDesc_Model(params,
type=params['MODEL_TYPE'],
verbose=params['VERBOSE'],
model_name=params['MODEL_NAME'] + '_reloaded',
vocabularies=dataset.vocabulary,
store_path=params['STORE_PATH'],
set_optimizer=False,
clear_dirs=False)
video_model = updateModel(video_model, params['RELOAD_PATH'], params['RELOAD'], reload_epoch=False)
video_model.setParams(params)
# Define the inputs and outputs mapping from our Dataset instance to our model
inputMapping = dict()
for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
if len(video_model.ids_inputs) > i:
pos_source = dataset.ids_inputs.index(id_in)
id_dest = video_model.ids_inputs[i]
inputMapping[id_dest] = pos_source
video_model.setInputsMapping(inputMapping)
outputMapping = dict()
for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
if len(video_model.ids_outputs) > i:
pos_target = dataset.ids_outputs.index(id_out)
id_dest = video_model.ids_outputs[i]
outputMapping[id_dest] = pos_target
video_model.setOutputsMapping(outputMapping)
video_model.setOptimizer()
params['MAX_EPOCH'] += params['RELOAD']
else:
if params['RELOAD'] == 0 or params['LOAD_WEIGHTS_ONLY']: # build new model
video_model = VideoDesc_Model(params,
type=params['MODEL_TYPE'],
verbose=params['VERBOSE'],
model_name=params['MODEL_NAME'],
vocabularies=dataset.vocabulary,
store_path=params['STORE_PATH'],
set_optimizer=True)
dict2pkl(params, params['STORE_PATH'] + '/config')
# Define the inputs and outputs mapping from our Dataset instance to our model
inputMapping = dict()
for i, id_in in enumerate(params['INPUTS_IDS_DATASET']):
if len(video_model.ids_inputs) > i:
pos_source = dataset.ids_inputs.index(id_in)
id_dest = video_model.ids_inputs[i]
inputMapping[id_dest] = pos_source
video_model.setInputsMapping(inputMapping)
outputMapping = dict()
for i, id_out in enumerate(params['OUTPUTS_IDS_DATASET']):
if len(video_model.ids_outputs) > i:
pos_target = dataset.ids_outputs.index(id_out)
id_dest = video_model.ids_outputs[i]
outputMapping[id_dest] = pos_target
video_model.setOutputsMapping(outputMapping)
# Only load weights from pre-trained model
if params['LOAD_WEIGHTS_ONLY'] and params['RELOAD'] > 0:
for i in range(0, len(params['RELOAD'])):
old_model = loadModel(params['PRE_TRAINED_MODEL_STORE_PATHS'][i], params['RELOAD'][i])
video_model = transferWeights(old_model, video_model, params['LAYERS_MAPPING'][i])
video_model.setOptimizer()
params['RELOAD'] = 0
else: # resume from previously trained model
video_model = loadModel(params['PRE_TRAINED_MODEL_STORE_PATHS'], params['RELOAD'])
video_model.params['LR'] = params['LR']
video_model.setOptimizer()
if video_model.model_path != params['STORE_PATH']:
video_model.setName(params['MODEL_NAME'], models_path=params['STORE_PATH'], clear_dirs=False)
# Update optimizer either if we are loading or building a model
video_model.params = params
video_model.setOptimizer()
###########
########### Test model saving/loading functions
# saveModel(video_model, params['RELOAD'])
# video_model = loadModel(params['STORE_PATH'], params['RELOAD'])
###########
########### Callbacks
callbacks = buildCallbacks(params, video_model, dataset)
###########
########### Training
total_start_time = timer()
logger.debug('Starting training!')
training_params = {'n_epochs': params['MAX_EPOCH'], 'batch_size': params['BATCH_SIZE'],
'homogeneous_batches': params['HOMOGENEOUS_BATCHES'], 'maxlen': params['MAX_OUTPUT_TEXT_LEN'],
'lr_decay': params['LR_DECAY'], 'lr_gamma': params['LR_GAMMA'],
'epochs_for_save': params['EPOCHS_FOR_SAVE'], 'verbose': params['VERBOSE'],
'eval_on_sets': params['EVAL_ON_SETS_KERAS'], 'n_parallel_loaders': params['PARALLEL_LOADERS'],
'extra_callbacks': callbacks, 'reload_epoch': params['RELOAD'], 'epoch_offset': params['RELOAD'],
'data_augmentation': params['DATA_AUGMENTATION'],
'patience': params.get('PATIENCE', 0), # early stopping parameters
'metric_check': params.get('STOP_METRIC', None),
'eval_on_epochs': params.get('EVAL_EACH_EPOCHS', True),
'each_n_epochs': params.get('EVAL_EACH', 1),
'start_eval_on_epoch': params.get('START_EVAL_ON_EPOCH', 0)
}
video_model.trainNet(dataset, training_params)
total_end_time = timer()
time_difference = total_end_time - total_start_time
logging.info('In total is {0:.2f}s = {1:.2f}m'.format(time_difference, time_difference / 60.0))
def apply_Video_model(params):
"""
Function for using a previously trained model for sampling.
"""
########### Load data
dataset = build_dataset(params)
if not '-vidtext-embed' in params['DATASET_NAME']:
params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['OUTPUTS_IDS_DATASET'][0]]
else:
params['OUTPUT_VOCABULARY_SIZE'] = dataset.vocabulary_len[params['INPUTS_IDS_DATASET'][1]]
###########
########### Load model
video_model = loadModel(params['STORE_PATH'], params['SAMPLING_RELOAD_POINT'],
reload_epoch=params['SAMPLING_RELOAD_EPOCH'])
video_model.setOptimizer()
###########
########### Apply sampling
extra_vars = dict()
extra_vars['tokenize_f'] = eval('dataset.' + params['TOKENIZATION_METHOD'])
extra_vars['language'] = params.get('TRG_LAN', 'en')
for s in params["EVAL_ON_SETS"]:
# Apply model predictions
params_prediction = {'max_batch_size': params['BATCH_SIZE'],
'n_parallel_loaders': params['PARALLEL_LOADERS'],
'predict_on_sets': [s]}
# Convert predictions into sentences
if not '-vidtext-embed' in params['DATASET_NAME']:
vocab = dataset.vocabulary[params['OUTPUTS_IDS_DATASET'][0]]['idx2words']
else:
vocab = None
if params['BEAM_SEARCH']:
params_prediction['beam_size'] = params['BEAM_SIZE']
params_prediction['maxlen'] = params['MAX_OUTPUT_TEXT_LEN_TEST']
params_prediction['optimized_search'] = params['OPTIMIZED_SEARCH'] and '-upperbound' not in params[
'DATASET_NAME']
params_prediction['model_inputs'] = params['INPUTS_IDS_MODEL']
params_prediction['model_outputs'] = params['OUTPUTS_IDS_MODEL']
params_prediction['dataset_inputs'] = params['INPUTS_IDS_DATASET']
params_prediction['dataset_outputs'] = params['OUTPUTS_IDS_DATASET']
params_prediction['normalize_probs'] = params['NORMALIZE_SAMPLING']
params_prediction['alpha_factor'] = params['ALPHA_FACTOR']
params_prediction['temporally_linked'] = '-linked' in params['DATASET_NAME'] and '-upperbound' not in \
params[
'DATASET_NAME'] and '-video' not in \
params[
'DATASET_NAME']
predictions = video_model.predictBeamSearchNet(dataset, params_prediction)[s]
predictions = decode_predictions_beam_search(predictions, vocab, verbose=params['VERBOSE'])
else:
predictions = video_model.predictNet(dataset, params_prediction)[s]
predictions = decode_predictions(predictions, 1, vocab, params['SAMPLING'], verbose=params['VERBOSE'])
# Store result
filepath = video_model.model_path + '/' + s + '_sampling.pred' # results file
if params['SAMPLING_SAVE_MODE'] == 'list':
list2file(filepath, predictions)
else:
raise Exception, 'Only "list" is allowed in "SAMPLING_SAVE_MODE"'
# Evaluate if any metric in params['METRICS']
for metric in params['METRICS']:
logging.info('Evaluating on metric ' + metric)
filepath = video_model.model_path + '/' + s + '_sampling.' + metric # results file
# Evaluate on the chosen metric
extra_vars[s] = dict()
extra_vars[s]['references'] = dataset.extra_variables[s][params['OUTPUTS_IDS_DATASET'][0]]
metrics = selectMetric[metric](
pred_list=predictions,
verbose=1,
extra_vars=extra_vars,
split=s)
# Print results to file
with open(filepath, 'w') as f:
header = ''
line = ''
for metric_ in sorted(metrics):
value = metrics[metric_]
header += metric_ + ','
line += str(value) + ','
f.write(header + '\n')
f.write(line + '\n')
logging.info('Done evaluating on metric ' + metric)
def buildCallbacks(params, model, dataset):
"""
Builds the selected set of callbacks run during the training of the model.
:param params: Dictionary of network hyperparameters.
:param model: Model instance on which to apply the callback.
:param dataset: Dataset instance on which to apply the callback.
:return:
"""
callbacks = []
if params['METRICS']:
# Evaluate training
extra_vars = {'language': params.get('TRG_LAN', 'en'),
'n_parallel_loaders': params['PARALLEL_LOADERS'],
'tokenize_f': eval('dataset.' + params['TOKENIZATION_METHOD'])}
if not '-vidtext-embed' in params['DATASET_NAME']:
vocab = dataset.vocabulary[params['OUTPUTS_IDS_DATASET'][0]]['idx2words']
for s in params['EVAL_ON_SETS']:
extra_vars[s] = dict()
extra_vars[s]['references'] = dataset.extra_variables[s][params['OUTPUTS_IDS_DATASET'][0]]
else:
vocab = None
extra_vars['n_classes'] = len(dataset.dic_classes[params['OUTPUTS_IDS_DATASET'][0]].values())
for s in params['EVAL_ON_SETS']:
extra_vars[s] = dict()
extra_vars[s]['references'] = eval('dataset.Y_' + s + '["' + params['OUTPUTS_IDS_DATASET'][0] + '"]')
if params['BEAM_SEARCH']:
extra_vars['beam_size'] = params.get('BEAM_SIZE', 6)
extra_vars['state_below_index'] = params.get('BEAM_SEARCH_COND_INPUT', -1)
extra_vars['maxlen'] = params.get('MAX_OUTPUT_TEXT_LEN_TEST', 30)
extra_vars['optimized_search'] = params.get('OPTIMIZED_SEARCH', True) and '-upperbound' not in params[
'DATASET_NAME']
extra_vars['model_inputs'] = params['INPUTS_IDS_MODEL']
extra_vars['model_outputs'] = params['OUTPUTS_IDS_MODEL']
extra_vars['dataset_inputs'] = params['INPUTS_IDS_DATASET']
extra_vars['dataset_outputs'] = params['OUTPUTS_IDS_DATASET']
extra_vars['normalize_probs'] = params.get('NORMALIZE_SAMPLING', False)
extra_vars['alpha_factor'] = params.get('ALPHA_FACTOR', 1.)
extra_vars['temporally_linked'] = '-linked' in params['DATASET_NAME'] and '-upperbound' not in params[
'DATASET_NAME'] and '-video' not in params['DATASET_NAME']
input_text_id = None
vocab_src = None
callback_metric = EvalPerformance(model,
dataset,
gt_id=params['OUTPUTS_IDS_DATASET'][0],
metric_name=params['METRICS'],
set_name=params['EVAL_ON_SETS'],
batch_size=params['BATCH_SIZE'],
each_n_epochs=params['EVAL_EACH'],
extra_vars=extra_vars,
reload_epoch=params['RELOAD'],
is_text=True,
input_text_id=input_text_id,
index2word_y=vocab,
index2word_x=vocab_src,
sampling_type=params['SAMPLING'],
beam_search=params['BEAM_SEARCH'],
save_path=model.model_path,
start_eval_on_epoch=params['START_EVAL_ON_EPOCH'],
write_samples=True,
write_type=params['SAMPLING_SAVE_MODE'],
eval_on_epochs=params['EVAL_EACH_EPOCHS'],
save_each_evaluation=params['SAVE_EACH_EVALUATION'],
verbose=params['VERBOSE'])
else:
callback_metric = EvalPerformance(model,
dataset,
gt_id=params['OUTPUTS_IDS_DATASET'][0],
metric_name=params['METRICS'],
set_name=params['EVAL_ON_SETS'],
batch_size=params['BATCH_SIZE'],
each_n_epochs=params['EVAL_EACH'],
extra_vars=extra_vars,
reload_epoch=params['RELOAD'],
save_path=model.model_path,
start_eval_on_epoch=params[
'START_EVAL_ON_EPOCH'],
write_samples=True,
write_type=params['SAMPLING_SAVE_MODE'],
eval_on_epochs=params['EVAL_EACH_EPOCHS'],
save_each_evaluation=params[
'SAVE_EACH_EVALUATION'],
verbose=params['VERBOSE'])
callbacks.append(callback_metric)
if params['SAMPLE_ON_SETS']:
# Write some samples
extra_vars = {'language': params.get('TRG_LAN', 'en'), 'n_parallel_loaders': params['PARALLEL_LOADERS']}
if not '-vidtext-embed' in params['DATASET_NAME']:
vocab = dataset.vocabulary[params['OUTPUTS_IDS_DATASET'][0]]['idx2words']
else:
vocab = None
if params['BEAM_SEARCH']:
extra_vars['beam_size'] = params['BEAM_SIZE']
extra_vars['state_below_index'] = params.get('BEAM_SEARCH_COND_INPUT', -1)
extra_vars['maxlen'] = params['MAX_OUTPUT_TEXT_LEN_TEST']
extra_vars['optimized_search'] = params['OPTIMIZED_SEARCH'] and '-upperbound' not in params['DATASET_NAME']
extra_vars['model_inputs'] = params['INPUTS_IDS_MODEL']
extra_vars['model_outputs'] = params['OUTPUTS_IDS_MODEL']
extra_vars['dataset_inputs'] = params['INPUTS_IDS_DATASET']
extra_vars['dataset_outputs'] = params['OUTPUTS_IDS_DATASET']
extra_vars['normalize_probs'] = params['NORMALIZE_SAMPLING']
extra_vars['alpha_factor'] = params['ALPHA_FACTOR']
extra_vars['temporally_linked'] = '-linked' in params['DATASET_NAME'] and '-upperbound' not in params[
'DATASET_NAME'] and '-video' not in params['DATASET_NAME']
callback_sampling = Sample(model,
dataset,
gt_id=params['OUTPUTS_IDS_DATASET'][0],
set_name=params['SAMPLE_ON_SETS'],
n_samples=params['N_SAMPLES'],
each_n_updates=params['SAMPLE_EACH_UPDATES'],
extra_vars=extra_vars,
reload_epoch=params['RELOAD'],
batch_size=params['BATCH_SIZE'],
is_text=True,
index2word_y=vocab, # text info
in_pred_idx=params['INPUTS_IDS_DATASET'][0],
sampling_type=params['SAMPLING'], # text info
beam_search=params['BEAM_SEARCH'],
start_sampling_on_epoch=params['START_SAMPLING_ON_EPOCH'],
verbose=params['VERBOSE'])
callbacks.append(callback_sampling)
return callbacks
def check_params(params):
if 'Glove' in params['MODEL_TYPE'] and params['GLOVE_VECTORS'] is None:
logger.warning("You set a model that uses pretrained word vectors but you didn't specify a vector file."
"We'll train WITHOUT pretrained embeddings!")
if params["USE_DROPOUT"] and params["USE_BATCH_NORMALIZATION"]:
logger.warning("It's not recommended to use both dropout and batch normalization")
if __name__ == "__main__":
parameters = load_parameters()
try:
for arg in sys.argv[1:]:
k, v = arg.split('=')
parameters[k] = ast.literal_eval(v)
except ValueError:
print 'Overwritten arguments must have the form key=Value'
exit(1)
check_params(parameters)
if parameters['MODE'] == 'training' or parameters['MODE'] == 'finetuning':
logging.info('Running training.')
train_model(parameters)
elif parameters['MODE'] == 'sampling':
logging.info('Running sampling.')
apply_Video_model(parameters)
logging.info('Done!')