|
| 1 | +import logging |
| 2 | + |
| 3 | +import hydra |
| 4 | +import os |
| 5 | +from pathlib import Path |
| 6 | +from omegaconf import DictConfig, OmegaConf |
| 7 | +import temos.launch.prepare # noqa |
| 8 | + |
| 9 | +logger = logging.getLogger(__name__) |
| 10 | + |
| 11 | + |
| 12 | +@hydra.main(version_base=None, config_path="configs", config_name="interact") |
| 13 | +def _interact(cfg: DictConfig): |
| 14 | + return interact(cfg) |
| 15 | + |
| 16 | + |
| 17 | +def cfg_mean_nsamples_resolution(cfg): |
| 18 | + if cfg.mean and cfg.number_of_samples > 1: |
| 19 | + logger.error("All the samples will be the mean.. cfg.number_of_samples=1 will be forced.") |
| 20 | + cfg.number_of_samples = 1 |
| 21 | + |
| 22 | + return cfg.number_of_samples == 1 |
| 23 | + |
| 24 | + |
| 25 | +def load_checkpoint(model, last_ckpt_path, *, eval_mode): |
| 26 | + # Load the last checkpoint |
| 27 | + # model = model.load_from_checkpoint(last_ckpt_path) |
| 28 | + # this will overide values |
| 29 | + # for example relative to rots2joints |
| 30 | + # So only load state dict is preferable |
| 31 | + import torch |
| 32 | + model.load_state_dict(torch.load(last_ckpt_path)["state_dict"]) |
| 33 | + logger.info("Model weights restored.") |
| 34 | + |
| 35 | + if eval_mode: |
| 36 | + model.eval() |
| 37 | + logger.info("Model in eval mode.") |
| 38 | + |
| 39 | + |
| 40 | +def interact(newcfg: DictConfig) -> None: |
| 41 | + # Load last config |
| 42 | + output_dir = Path(hydra.utils.to_absolute_path(newcfg.folder)) |
| 43 | + last_ckpt_path = newcfg.last_ckpt_path |
| 44 | + |
| 45 | + # Load previous config |
| 46 | + prevcfg = OmegaConf.load(output_dir / ".hydra/config.yaml") |
| 47 | + # Overload it |
| 48 | + cfg = OmegaConf.merge(prevcfg, newcfg) |
| 49 | + oneinteract = cfg_mean_nsamples_resolution(cfg) |
| 50 | + |
| 51 | + text = cfg.text |
| 52 | + logger.info(f"Interaction script. The result will be saved there: {cfg.saving}") |
| 53 | + logger.info(f"The sentence is: {text}") |
| 54 | + |
| 55 | + filename = (text |
| 56 | + .lower() |
| 57 | + .strip() |
| 58 | + .replace(" ", "_") |
| 59 | + .replace(".", "") + "_len_" + str(cfg.length) |
| 60 | + ) |
| 61 | + |
| 62 | + os.makedirs(cfg.saving, exist_ok=True) |
| 63 | + path = Path(cfg.saving) |
| 64 | + |
| 65 | + import pytorch_lightning as pl |
| 66 | + import numpy as np |
| 67 | + import torch |
| 68 | + from hydra.utils import instantiate |
| 69 | + pl.seed_everything(cfg.seed) |
| 70 | + |
| 71 | + logger.info("Loading model") |
| 72 | + if cfg.jointstype == "vertices": |
| 73 | + assert cfg.gender in ["male", "female", "neutral"] |
| 74 | + logger.info(f"The topology will be {cfg.gender}.") |
| 75 | + cfg.model.transforms.rots2joints.gender = cfg.gender |
| 76 | + |
| 77 | + logger.info("Loading data module") |
| 78 | + data_module = instantiate(cfg.data) |
| 79 | + logger.info(f"Data module '{cfg.data.dataname}' loaded") |
| 80 | + |
| 81 | + model = instantiate(cfg.model, |
| 82 | + nfeats=data_module.nfeats, |
| 83 | + logger_name="none", |
| 84 | + nvids_to_save=None, |
| 85 | + _recursive_=False) |
| 86 | + |
| 87 | + logger.info(f"Model '{cfg.model.modelname}' loaded") |
| 88 | + |
| 89 | + load_checkpoint(model, last_ckpt_path, eval_mode=True) |
| 90 | + |
| 91 | + if "amass" in cfg.data.dataname and "xyz" not in cfg.data.dataname: |
| 92 | + model.transforms.rots2joints.jointstype = cfg.jointstype |
| 93 | + |
| 94 | + model.sample_mean = cfg.mean |
| 95 | + model.fact = cfg.fact |
| 96 | + |
| 97 | + if not model.hparams.vae and cfg.number_of_samples > 1: |
| 98 | + raise TypeError("Cannot get more than 1 sample if it is not a VAE.") |
| 99 | + |
| 100 | + from temos.data.tools.collate import collate_text_and_length |
| 101 | + |
| 102 | + from temos.data.sampling import upsample |
| 103 | + from rich.progress import Progress |
| 104 | + from rich.progress import track |
| 105 | + |
| 106 | + # remove printing for changing the seed |
| 107 | + logging.getLogger('pytorch_lightning.utilities.seed').setLevel(logging.WARNING) |
| 108 | + |
| 109 | + import torch |
| 110 | + with torch.no_grad(): |
| 111 | + if True: |
| 112 | + # with Progress(transient=True) as progress: |
| 113 | + # task = progress.add_task("Sampling", total=len(dataset.keyids)) |
| 114 | + # progress.update(task, description=f"Sampling {keyid}..") |
| 115 | + for index in range(cfg.number_of_samples): |
| 116 | + # batch_size = 1 for reproductability |
| 117 | + element = {"text": text, "length": cfg.length} |
| 118 | + batch = collate_text_and_length([element]) |
| 119 | + |
| 120 | + # fix the seed |
| 121 | + pl.seed_everything(50 + index) |
| 122 | + |
| 123 | + if cfg.jointstype == "vertices": |
| 124 | + vertices = model(batch)[0] |
| 125 | + motion = vertices.numpy() |
| 126 | + # no upsampling here to keep memory |
| 127 | + # vertices = upinteract(vertices, cfg.data.framerate, 100) |
| 128 | + else: |
| 129 | + joints = model(batch)[0] |
| 130 | + motion = joints.numpy() |
| 131 | + # upscaling to compare with other methods |
| 132 | + motion = upsample(motion, cfg.data.framerate, 100) |
| 133 | + |
| 134 | + if cfg.number_of_samples > 1: |
| 135 | + npypath = path / f"{filename}_{index}.npy" |
| 136 | + else: |
| 137 | + npypath = path / f"{filename}.npy" |
| 138 | + np.save(npypath, motion) |
| 139 | + # progress.update(task, advance=1) |
| 140 | + |
| 141 | + logger.info("All the sampling are done") |
| 142 | + logger.info(f"All the sampling are done. You can find them here:\n{path}") |
| 143 | + |
| 144 | + |
| 145 | +if __name__ == '__main__': |
| 146 | + _interact() |
0 commit comments