-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathblocks.py
225 lines (201 loc) · 6.72 KB
/
blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import torch.nn.functional as F
from torch import nn
class ResBlocks(nn.Module):
def __init__(self, num_blocks, dim, norm, activation, pad_type):
super(ResBlocks, self).__init__()
self.model = []
for i in range(num_blocks):
self.model += [
ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)
]
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x)
class ResBlock(nn.Module):
def __init__(self, dim, norm="in", activation="relu", pad_type="zero"):
super(ResBlock, self).__init__()
model = []
model += [
Conv2dBlock(
dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type
)
]
model += [
Conv2dBlock(
dim, dim, 3, 1, 1, norm=norm, activation="none", pad_type=pad_type
)
]
self.model = nn.Sequential(*model)
def forward(self, x):
residual = x
out = self.model(x)
out += residual
return out
class ActFirstResBlock(nn.Module):
def __init__(self, fin, fout, fhid=None, activation="lrelu", norm="none"):
super().__init__()
self.learned_shortcut = fin != fout
self.fin = fin
self.fout = fout
self.fhid = min(fin, fout) if fhid is None else fhid
self.conv_0 = Conv2dBlock(
self.fin,
self.fhid,
3,
1,
padding=1,
pad_type="reflect",
norm=norm,
activation=activation,
activation_first=True,
)
self.conv_1 = Conv2dBlock(
self.fhid,
self.fout,
3,
1,
padding=1,
pad_type="reflect",
norm=norm,
activation=activation,
activation_first=True,
)
if self.learned_shortcut:
self.conv_s = Conv2dBlock(
self.fin, self.fout, 1, 1, activation="none", use_bias=False
)
def forward(self, x):
x_s = self.conv_s(x) if self.learned_shortcut else x
dx = self.conv_0(x)
dx = self.conv_1(dx)
out = x_s + dx
return out
class LinearBlock(nn.Module):
def __init__(self, in_dim, out_dim, norm="none", activation="relu"):
super(LinearBlock, self).__init__()
use_bias = True
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
# initialize normalization
norm_dim = out_dim
if norm == "bn":
self.norm = nn.BatchNorm1d(norm_dim)
elif norm == "in":
self.norm = nn.InstanceNorm1d(norm_dim)
elif norm == "none":
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == "relu":
self.activation = nn.ReLU(inplace=False)
elif activation == "lrelu":
self.activation = nn.LeakyReLU(0.2, inplace=False)
elif activation == "tanh":
self.activation = nn.Tanh()
elif activation == "none":
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
def forward(self, x):
out = self.fc(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
class Conv2dBlock(nn.Module):
def __init__(
self,
in_dim,
out_dim,
ks,
st,
padding=0,
norm="none",
activation="relu",
pad_type="zero",
use_bias=True,
activation_first=False,
):
super(Conv2dBlock, self).__init__()
self.use_bias = use_bias
self.activation_first = activation_first
# initialize padding
if pad_type == "reflect":
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == "replicate":
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == "zero":
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# initialize normalization
norm_dim = out_dim
if norm == "bn":
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == "in":
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == "adain":
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == "none":
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == "relu":
self.activation = nn.ReLU(inplace=False)
elif activation == "lrelu":
self.activation = nn.LeakyReLU(0.2, inplace=False)
elif activation == "tanh":
self.activation = nn.Tanh()
elif activation == "none":
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
self.conv = nn.Conv2d(in_dim, out_dim, ks, st, bias=self.use_bias)
def forward(self, x):
if self.activation_first:
if self.activation:
x = self.activation(x)
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
else:
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1):
super(AdaptiveInstanceNorm2d, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
self.weight = None
self.bias = None
self.register_buffer("running_mean", torch.zeros(num_features))
self.register_buffer("running_var", torch.ones(num_features))
def forward(self, x):
assert (
self.weight is not None and self.bias is not None
), "Please assign AdaIN weight first"
b, c = x.size(0), x.size(1)
running_mean = self.running_mean.repeat(b)
running_var = self.running_var.repeat(b)
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
out = F.batch_norm(
x_reshaped,
running_mean,
running_var,
self.weight,
self.bias,
True,
self.momentum,
self.eps,
)
return out.view(b, c, *x.size()[2:])
def __repr__(self):
return self.__class__.__name__ + "(" + str(self.num_features) + ")"