-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathbatch_norm.py
113 lines (104 loc) · 5.15 KB
/
batch_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# -*- coding: utf-8 -*-
"""
Preliminary implementation of batch normalization for Lasagne.
Does not include a way to properly compute the normalization factors over the
full training set for testing, but can be used as a drop-in for training and
validation.
Author: Jan Schlüter
"""
import numpy as np
import lasagne
import theano
import theano.tensor as T
class BatchNormLayer(lasagne.layers.Layer):
def __init__(self, incoming, axes=None, epsilon=0.01, alpha=0.5,
nonlinearity=None, **kwargs):
"""
Instantiates a layer performing batch normalization of its inputs,
following Ioffe et al. (http://arxiv.org/abs/1502.03167).
@param incoming: `Layer` instance or expected input shape
@param axes: int or tuple of int denoting the axes to normalize over;
defaults to all axes except for the second if omitted (this will
do the correct thing for dense layers and convolutional layers)
@param epsilon: small constant added to the standard deviation before
dividing by it, to avoid numeric problems
@param alpha: coefficient for the exponential moving average of
batch-wise means and standard deviations computed during training;
the larger, the more it will depend on the last batches seen
@param nonlinearity: nonlinearity to apply to the output (optional)
"""
super(BatchNormLayer, self).__init__(incoming, **kwargs)
if axes is None:
# default: normalize over all but the second axis
axes = (0,) + tuple(range(2, len(self.input_shape)))
elif isinstance(axes, int):
axes = (axes,)
self.axes = axes
self.epsilon = epsilon
self.alpha = alpha
if nonlinearity is None:
nonlinearity = lasagne.nonlinearities.identity
self.nonlinearity = nonlinearity
shape = list(self.input_shape)
broadcast = [False] * len(shape)
for axis in self.axes:
shape[axis] = 1
broadcast[axis] = True
if any(size is None for size in shape):
raise ValueError("BatchNormLayer needs specified input sizes for "
"all dimensions/axes not normalized over.")
dtype = theano.config.floatX
self.mean = self.add_param(lasagne.init.Constant(0), shape, 'mean',
trainable=False, regularizable=False)
self.std = self.add_param(lasagne.init.Constant(1), shape, 'std',
trainable=False, regularizable=False)
self.beta = self.add_param(lasagne.init.Constant(0), shape, 'beta',
trainable=True, regularizable=True)
self.gamma = self.add_param(lasagne.init.Constant(1), shape, 'gamma',
trainable=True, regularizable=False)
def get_output_for(self, input, deterministic=False, **kwargs):
if deterministic:
# use stored mean and std
mean = self.mean
std = self.std
else:
# use this batch's mean and std
mean = input.mean(self.axes, keepdims=True)
std = input.std(self.axes, keepdims=True)
# and update the stored mean and std:
# we create (memory-aliased) clones of the stored mean and std
running_mean = theano.clone(self.mean, share_inputs=False)
running_std = theano.clone(self.std, share_inputs=False)
# set a default update for them
running_mean.default_update = ((1 - self.alpha) * running_mean +
self.alpha * mean)
running_std.default_update = ((1 - self.alpha) * running_std +
self.alpha * std)
# and include them in the graph so their default updates will be
# applied (although the expressions will be optimized away later)
mean += 0 * running_mean
std += 0 * running_std
std += self.epsilon
mean = T.addbroadcast(mean, *self.axes)
std = T.addbroadcast(std, *self.axes)
beta = T.addbroadcast(self.beta, *self.axes)
gamma = T.addbroadcast(self.gamma, *self.axes)
normalized = (input - mean) * (gamma / std) + beta
return self.nonlinearity(normalized)
def batch_norm(layer):
"""
Convenience function to apply batch normalization to a given layer's output.
Will steal the layer's nonlinearity if there is one (effectively introducing
the normalization right before the nonlinearity), and will remove the
layer's bias if there is one (because it would be redundant).
@param layer: The `Layer` instance to apply the normalization to; note that
it will be irreversibly modified as specified above
@return: A `BatchNormLayer` instance stacked on the given `layer`
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b'):
del layer.params[layer.b]
layer.b = None
return BatchNormLayer(layer, nonlinearity=nonlinearity)