-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathopticalflow_model_io.lua
220 lines (212 loc) · 8.09 KB
/
opticalflow_model_io.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
require 'opticalflow_model'
function getKernels(geometry, model)
local kernel = {}
if geometry.multiscale then
for i = 1,#geometry.ratios do
local matcher = model.modules[2].unfocused_pipeline.modules[i].modules[3]
local weight = matcher.modules[1].modules[1].modules[3].modules[1].weight
table.insert(kernel, weight)
if #geometry.layers > 1 then
local weight2 = matcher.modules[1].modules[1].modules[3].modules[3].weight
if weight2:nDimension() > 3 then --what that happens *only* sometimes??
weight2 = weight2:reshape(weight2:size(1)*weight2:size(2), weight2:size(3),
weight2:size(4))
end
table.insert(kernel, weight2)
end
if #geometry.layers > 2 then
local weight3 = matcher.modules[1].modules[1].modules[3].modules[3].weight
if weight3:nDimension() > 3 then --what that happens *only* sometimes??
weight3 = weight3:reshape(weight3:size(1)*weight3:size(2), weight3:size(3),
weight3:size(4))
end
table.insert(kernel, weight3)
end
end
else
local weight = model.modules[1].modules[1].modules[1].weight
table.insert(kernel, weight)
if #geometry.layers > 1 then
local weight2 = model.modules[1].modules[1].modules[3].weight
if weight2:nDimension() > 3 then --what that happens *only* sometimes??
weight2 = weight2:reshape(weight2:size(1)*weight2:size(2), weight2:size(3),
weight2:size(4))
end
table.insert(kernel, weight2)
end
if #geometry.layers > 2 then
local weight3 = model.modules[1].modules[1].modules[5].weight
if weight3:nDimension() > 3 then --what that happens *only* sometimes??
weight3 = weight3:reshape(weight3:size(1)*weight3:size(2), weight3:size(3),
weight3:size(4))
end
table.insert(kernel, weight3)
end
end
return kernel
end
function describeModel(geometry, learning)
local imgSize = 'imgSize=(' .. geometry.hImg .. 'x' .. geometry.wImg .. ')'
local kernel = 'kernel=('
for i = 1,#geometry.layers do
kernel = kernel .. geometry.layers[i][1] .. 'x' .. geometry.layers[i][2] .. 'x'
kernel = kernel .. geometry.layers[i][3] .. 'x' .. geometry.layers[i][4]
if i ~= #geometry.layers then
kernel = kernel .. ', '
end
end
if geometry.L2Pooling then kernel = kernel .. ' l2' end
if geometry.output_extraction_method == 'mean' then kernel = kernel .. ' mean' end
kernel = kernel .. ')'
if geometry.multiscale then
kernel = kernel .. 'x{' .. geometry.ratios[1]
for i = 2,#geometry.ratios do
kernel = kernel .. ',' .. geometry.ratios[i]
end
kernel = kernel .. '}'
end
local win = 'win=(' .. geometry.maxh .. 'x' .. geometry.maxw .. ')'
if (geometry.maxhHR ~= geometry.maxhGT) or (geometry.maxwHR ~= geometry.maxwGT) then
win = win .. ' gtwin=(' .. geometry.maxhGT .. 'x' .. geometry.maxwGT .. ')'
end
local images = 'imgs=(' .. learning.first_image .. ':' .. learning.delta .. ':'
images = images .. learning.first_image+learning.delta*(learning.num_images-1) .. ')'
local learning_ = 'learning rate=(' .. learning.rate .. ', ' .. learning.rate_decay
learning_ = learning_ .. ') weightDecay=' .. learning.weight_decay
local summary = imgSize .. ' ' .. kernel .. ' ' .. win .. ' ' .. images .. ' ' .. learning_ .. ' '
local extra = {}
if geometry.multiscale then
if geometry.cascad_trainable_weights then
table.insert(extra, 'TrainCascad')
else
table.insert(extra, 'NoTrainCascad')
end
end
if learning.renew_train_set then table.insert(extra, 'renewTrainSet') end
if geometry.motion_correction then table.insert(extra, 'MotionCorrection') end
if geometry.share_filters then table.insert(extra, 'ShareFilters') end
if learning.soft_targets then table.insert(extra, 'SoftTargets('..learning.st_sigma2..')') end
if geometry.single_beta then table.insert(extra, 'SingleBeta') end
if learning.groundtruth=='liu' then table.insert(extra, 'Liu') end
summary = summary .. table.concat(extra, ' ')
return summary
end
function saveModel(dir, basefilename, geometry, learning, model, nEpochs, score)
if dir:sub(-1) ~= '/' then dir = dir..'/' end
local modelsdirbase = dir
local kernel = ''
for i = 1,#geometry.layers do
kernel = kernel .. geometry.layers[i][1] .. 'x' .. geometry.layers[i][2] .. 'x'
kernel = kernel .. geometry.layers[i][3] .. 'x' .. geometry.layers[i][4]
if i ~= #geometry.layers then
kernel = kernel .. '_'
end
end
kernel = kernel .. '-' .. geometry.maxhHR .. 'x' .. geometry.maxwHR .. '-'
if geometry.L2Pooling then kernel = kernel .. '_l2' end
if geometry.output_extraction_method == 'mean' then kernel = kernel .. '_mean' end
if geometry.share_filters then kernel = kernel .. '_sf' end
if geometry.multiscale then
for i = 1,#geometry.ratios do
kernel = kernel .. '-' .. geometry.ratios[i]
end
end
local modeldir = modelsdirbase .. kernel
local targets = ''
local renew = ''
local motion = ''
local share = ''
local train_cascad = ''
local gt = ''
if geometry.multiscale then
if geometry.cascad_trainable_weights then
train_cascad = '_tcw'
else
train_cascad = '_ntcw'
end
if geometry.single_beta then
train_cascad = train_cascad..'_sb'
end
end
if learning.renew_train_set then renew = '_renew' end
if geometry.motion_correction then motion = '_mc' end
if learning.soft_targets then targets = '_st'..learning.st_sigma2 end
if learning.groundtruth == 'liu' then gt = '_liu' end
local train_params = geometry.maxhGT .. 'x' .. geometry.maxwGT .. '-'
train_params = train_params .. 'r' .. learning.rate .. '_rd' .. learning.rate_decay
train_params = train_params .. '_wd' ..learning.weight_decay .. targets .. renew .. gt
train_params = train_params .. train_cascad
modeldir = modeldir .. '/' .. train_params
local images = learning.first_image .. '_' .. learning.delta .. '_'
images = images .. (learning.first_image+learning.delta*(learning.num_images-1)) .. motion
modeldir = modeldir .. '/' .. images
os.execute('mkdir -p ' .. modeldir)
local tosave = {}
tosave.version = 9
if geometry.multiscale then
tosave.getModel = getModelMultiscale
else
tosave.getModel = getModel
end
tosave.model_descr = model:__tostring__()
tosave.weights = model:getWeights()
tosave.geometry = geometry
tosave.learning = learning
tosave.getKernels = getKernels
tosave.getFilter = getFilter
tosave.score = score
torch.save(string.format("%s/%s_e%06d",modeldir, basefilename, nEpochs), tosave)
end
function loadModel(filename, full_output, prefilter, wImg, hImg)
local loaded = torch.load(filename)
local ret = {}
if loaded.version < 9 then
error("loadModel: can't load before version 9 (structure has changed too much)")
else
ret.geometry = loaded.geometry
if wImg then ret.geometry.wImg = wImg end
if hImg then ret.geometry.hImg = hImg end
if full_output then
ret.geometry.training_mode = false
else
ret.geometry.training_mode = true
end
ret.model = loaded.getModel(ret.geometry, full_output, prefilter)
ret.getKernels = loaded.getKernels
ret.score = loaded.score
if prefilter == true then
if ret.geometry.multiscale then
local filter = loaded.getFilter(ret.geometry)
ret.filter = getMultiscalePrefilter(ret.geometry, filter)
else
ret.filter = loaded.getFilter(ret.geometry)
end
local weights = ret.filter:getWeights()
for k,v in pairs(weights) do
weights[k]:copy(loaded.weights[k])
end
weights = ret.model:getWeights()
for k,v in pairs(weights) do
weights[k]:copy(loaded.weights[k])
end
else
local weights = ret.model:getWeights()
for k,v in pairs(weights) do
weights[k]:copy(loaded.weights[k])
end
end
end
return ret
end
function loadWeightsFrom(model, filename)
local loaded = torch.load(filename)
if loaded.version < 9 then
error("Can't load weights from file before version 9")
end
local weights = model:getWeights()
for k,v in pairs(loaded.weights) do
if weights[k] then
weights[k]:copy(v)
end
end
end