-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathopticalflow_model_multiscale.lua
373 lines (347 loc) · 12 KB
/
opticalflow_model_multiscale.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
require 'torch'
require 'xlua'
require 'nnx'
require 'SmartReshape'
require 'common'
require 'CascadingAddTable'
require 'inline'
require 'extractoutput'
function yx2xMulti(geometry, y, x)
x = round(x)
y = round(y)
function isIn(size, x)
return (x >= -math.ceil(size/2)+1) and (x <= math.floor(size/2))
end
local targetx, targety
local i = 1
while i <= #geometry.ratios do
if (isIn(geometry.maxw*geometry.ratios[i], x) and
isIn(geometry.maxh*geometry.ratios[i], y)) then
--todo this doesn't work it geometry.maxw/geometry.ratios[i] is odd
targetx = math.ceil(x/geometry.ratios[i]) + math.ceil(geometry.maxw/2)
targety = math.ceil(y/geometry.ratios[i]) + math.ceil(geometry.maxh/2)
break
end
i = i + 1
end
assert(i <= #geometry.ratios)
if i == 1 then
itarget = (targety-1) * geometry.maxw + targetx
else
-- skip the middle area
local d = math.floor(geometry.maxw*(geometry.ratios[i]-geometry.ratios[i-1])/(2*geometry.ratios[i]) + 0.5)
if targety <= d then
itarget = (targety-1)*geometry.maxw+targetx
elseif targety > geometry.maxh-d then
itarget = d*geometry.maxw + 2*(geometry.maxh-2*d)*d
+ (targety-(geometry.maxh-d)-1)*geometry.maxw+targetx
elseif targetx <= d then
itarget = d*geometry.maxw + (targety-d-1)*d+targetx
elseif targetx > geometry.maxw-d then
itarget = d*geometry.maxw + (geometry.maxh-2*d)*d
+ (targety-d-1)*d + targetx-(geometry.maxw-d)
else
print(x, y)
assert(false)
end
itarget = geometry.maxw*geometry.maxh
+ (i-2)*(2*d*geometry.maxw + 2*(geometry.maxh-2*d)*d) + itarget
end
return itarget
end
function x2yxMulti(geometry, x)
if type(x) == 'number' then
return x2yxMultiNumber(geometry, x)
else
return x2yxMulti2(geometry, x)
--[[
local retx = torch.Tensor(x:size())
local rety = torch.Tensor(x:size())
for i = 1,x:size(1) do
for j = 1,x:size(2) do
rety[i][j], retx[i][j] = x2yxMultiNumber(geometry, x[i][j])
end
end
return rety, retx
--]]
end
end
function x2yxMulti2(geometry, x)
local file = io.open("x2yxMulti2.c")
local process = inline.load(file:read("*all"))
file:close()
local retx = torch.LongTensor():resizeAs(x)
local rety = torch.LongTensor():resizeAs(x)
print(rety:size())
process(x, geometry.maxh, geometry.maxw, geometry.ratios, retx, rety)
return rety, retx
end
function x2yxMultiNumber(geometry, x)
assert(type(x) == 'number')
if x <= geometry.maxh*geometry.maxw then
-- higher resolution : full patch used
local targety = math.floor((x-1)/geometry.maxw)+1
local targetx = math.mod(x-1, geometry.maxw)+1
return targety - math.ceil(geometry.maxh/2), targetx - math.ceil(geometry.maxw/2)
else
-- smaller resolution : middle area isn't used
x = x - geometry.maxh*geometry.maxw
for i = 2,#geometry.ratios do
local d = round(geometry.maxw * (geometry.ratios[i]-geometry.ratios[i-1])
/(2*geometry.ratios[i]))
local len = 2*d*geometry.maxw + 2*(geometry.maxh-2*d)*d
if x <= len then
if x <= d*geometry.maxw then
local targety = math.floor((x-1) / geometry.maxw) + 1
local targetx = math.mod(x-1, geometry.maxw) + 1
return (targety - math.ceil(geometry.maxh/2))*geometry.ratios[i],
(targetx - math.ceil(geometry.maxw/2))*geometry.ratios[i]
end
x = x - d*geometry.maxw
if x <= (geometry.maxh-2*d)*d then
local targety = math.floor((x-1) / d) + 1 + d
local targetx = math.mod(x-1, d) + 1
return (targety - math.ceil(geometry.maxh/2))*geometry.ratios[i],
(targetx - math.ceil(geometry.maxw/2))*geometry.ratios[i]
end
x = x - (geometry.maxh-2*d)*d
if x <= (geometry.maxh-2*d)*d then
local targety = math.floor((x-1) / d) + 1 + d
local targetx = math.mod(x-1, d) + 1 + geometry.maxw-d
return (targety - math.ceil(geometry.maxh/2))*geometry.ratios[i],
(targetx - math.ceil(geometry.maxw/2))*geometry.ratios[i]
end
x = x - (geometry.maxh-2*d)*d
if x <= d*geometry.maxw then
local targety = math.floor((x-1) / geometry.maxw) + 1 + geometry.maxh-d
local targetx = math.mod(x-1, geometry.maxw) + 1
return (targety - math.ceil(geometry.maxh/2))*geometry.ratios[i],
(targetx - math.ceil(geometry.maxw/2))*geometry.ratios[i]
end
assert(false) --this should not happen if the code is correct
else
x = x - len
end
end
end
assert(false) -- this should not happen if geometry is coherent with x
end
function getMultiscalePrefilter(geometry, filter)
assert(geometry.multiscale)
local wPad = geometry.wPatch2-1
local hPad = geometry.hPatch2-1
local padLeft = math.floor(wPad/2)
local padRight = math.ceil (wPad/2)
local padTop = math.floor(hPad/2)
local padBottom = math.ceil (hPad/2)
local prefilter = nn.ConcatTable()
for i = 1,#geometry.ratios do
local seq = nn.Sequential()
seq:add(nn.SpatialDownSampling(geometry.ratios[i], geometry.ratios[i]))
seq:add(nn.SpatialZeroPadding(padLeft, padRight, padTop, padBottom))
if geometry.share_filters then
seq:add(filter:clone('weight', 'bias', 'gradWeight', 'gradBias'))
else
seq:add(filter:clone())
end
prefilter:add(seq)
end
function prefilter:getWeights()
local weights = {}
if geometry.share_filters then
weights = self.modules[1].modules[3]:getWeights()
else
for i = 1,#geometry.ratios do
local lweights = self.modules[i].modules[3]:getWeights()
for n,w in pairs(lweights) do
local name = 'scale'..geometry.ratios[i]..'_'..n
weights[name] = w
end
end
end
return weights
end
return prefilter
end
function getModelMultiscale(geometry, full_image, prefiltered)
assert(geometry.output_extraction_method == 'max')
local model = nn.Sequential()
if not geometry.training_mode then
model:add(nn.Tic('model'))
end
if prefiltered == nil then prefiltered = false end
assert(geometry.ratios[1] == 1)
local rmax = geometry.ratios[#geometry.ratios]
for i = 1,#geometry.ratios do
local k = rmax - geometry.ratios[i]
assert(math.mod(geometry.maxh * k, 2) == 0)
assert(math.mod(geometry.maxw * k, 2) == 0)
end
local nChannelsIn
if prefiltered then
nChannelsIn = geometry.layers[#geometry.layers][4]
else
nChannelsIn = geometry.layers[1][1]
end
local filter1 = nn.Sequential()
local filter2 = nn.Sequential()
filter1:add(nn.Narrow(1, 1, nChannelsIn))
filter1:add(nn.SpatialZeroPadding(-math.floor((geometry.maxw-1)/2),
-math.ceil ((geometry.maxw-1)/2),
-math.floor((geometry.maxh-1)/2),
-math.ceil ((geometry.maxh-1)/2)))
filter2:add(nn.Narrow(1, nChannelsIn+1, nChannelsIn))
if not prefiltered then
local filter = getFilter(geometry)
filter1:add(filter)
filter2:add(filter:clone('weight', 'bias', 'gradWeight', 'gradBias'))
end
local matcher_filters = nn.ConcatTable()
matcher_filters:add(filter1)
matcher_filters:add(filter2)
local matcher = nn.Sequential()
matcher:add(matcher_filters)
matcher:add(nn.SpatialMatching(geometry.maxh, geometry.maxw, false))
local matchers = {}
for i = 1,#geometry.ratios do
if geometry.share_filters then
matchers[i] = matcher:clone('weight', 'bias', 'gradWeight', 'gradBias')
else
matchers[i] = matcher:clone()
end
end
local pyramid = nn.SpatialPyramid(geometry.ratios, matchers,
geometry.wPatch2, geometry.hPatch2, 1, 1,
3, 2, 2, 1, prefiltered)
model.pyramid = pyramid
if not prefiltered then
model:add(nn.JoinTable(1))
model:add(nn.FunctionWrapper(function(self)
self.padder = nn.SpatialPadding(0,0,0,0)
end,
function(self, input)
-- doesn't work if the ratios have weird ratios
local r = geometry.ratios[#geometry.ratios]
local targeth = r*math.ceil(input:size(2)/r)
local targetw = r*math.ceil(input:size(3)/r)
self.padder.pad_b = targeth-input:size(2)
self.padder.pad_r = targetw-input:size(3)
if (self.padder.pad_b~=0) or (self.padder.par_r~=0) then
return self.padder:updateOutput(input)
else
return input
end
end,
function(self, input, gradOutput)
if (self.padder.pad_b~=0) or (self.padder.par_r~=0) then
return self.padder:updateGradInput(input, gradOutput)
else
return gradOutput
end
end))
else
--todo: this is not smart
local parallel = nn.ParallelTable()
for i = 1,#geometry.ratios do
parallel:add(nn.JoinTable(1))
end
model:add(parallel)
end
model:add(pyramid)
if not geometry.training_mode then
model:add(nn.Toc('model', 'after pyramid'))
end
local cascad_preproc = nn.ParallelTable()
for i = 1,#geometry.ratios do
local seq = nn.Sequential()
cascad_preproc:add(seq)
seq:add(nn.SmartReshape({-1,-2},{-3,-4}))
seq:add(nn.Minus())
seq:add(nn.SoftMax())
seq:add(nn.SmartReshape(-1,geometry.maxh, geometry.maxw))
end
model:add(cascad_preproc)
if not geometry.training_mode then
model:add(nn.Toc('model', 'after cascad_preproc'))
end
local cascad = nn.CascadingAddTable(geometry.ratios, geometry.cascad_trainable_weights,
geometry.single_beta)
model.cascad = cascad
model:add(cascad)
if not geometry.training_mode then
model:add(nn.Toc('model', 'after cascad'))
end
local postprocessors = nn.ParallelTable()
postprocessors:add(nn.SmartReshape(-1, {-2, -3}))
for i = 2,#geometry.ratios do
local d = round(geometry.maxw*(geometry.ratios[i]-geometry.ratios[i-1])/(2*geometry.ratios[i]))
local remover1 = nn.Sequential()
local remover2 = nn.Sequential()
local remover3 = nn.Sequential()
local remover4 = nn.Sequential()
remover1:add(nn.Narrow(2, 1, d))
remover2:add(nn.Narrow(2, d+1, geometry.maxh-2*d))
remover2:add(nn.Narrow(3, 1, d))
remover3:add(nn.Narrow(2, d+1, geometry.maxh-2*d))
remover3:add(nn.Narrow(3, geometry.maxw-d+1, d))
remover4:add(nn.Narrow(2, geometry.maxh-d+1, d))
remover1:add(nn.SmartReshape(-1, {-2, -3}))
remover2:add(nn.SmartReshape(-1, {-2, -3}))
remover3:add(nn.SmartReshape(-1, {-2, -3}))
remover4:add(nn.SmartReshape(-1, {-2, -3}))
local removers = nn.ConcatTable()
removers:add(remover1)
removers:add(remover2)
removers:add(remover3)
removers:add(remover4)
local middleRemover = nn.Sequential()
middleRemover:add(removers)
middleRemover:add(nn.JoinTable(2))
postprocessors:add(middleRemover:clone())
end
model:add(postprocessors)
model:add(nn.JoinTable(2))
if not geometry.training_mode then
model:add(nn.Toc('model', 'after complex reshaping'))
end
if geometry.training_mode then
model:add(nn.SmartReshape(1,1,-2))
else
model:add(nn.SmartReshape(geometry.hImg, geometry.wImg,-2))
end
if geometry.training_mode then
model:add(nn.Log2(1e-10))
end
function model:focus(x, y)
if not x then
pyramid:focus()
else
pyramid:focus(x, y, 1, 1)
end
end
function model:getWeights()
local weights = {}
if geometry.cascad_trainable_weights then
weights['cascad'] = self.cascad:getWeight()
end
if not prefiltered then
local processors = self.pyramid.processors
if geometry.share_filters then
local lweights = processors[1].modules[1].modules[1].modules[3]:getWeights()
for n,w in pairs(lweights) do
weights[n] = w
end
else
for i = 1,#processors do
local lweights = processors[i].modules[1].modules[1].modules[3]:getWeights()
for n,w in pairs(lweights) do
local name = 'scale'..geometry.ratios[i]..'_'..n
weights[name] = w
end
end
end
end
return weights
end
return model
end