Skip to content

Latest commit

 

History

History
105 lines (71 loc) · 3.46 KB

compat.md

File metadata and controls

105 lines (71 loc) · 3.46 KB

Compatibility Tools

Some packages require a little extra help to work nicely with PythonCall.

Some of these are "fixes" that are silently applied for you, and some are just extra functions to bridge a gap. We aim to keep these as minimal as possible.

Python standard library

Whenever a Python exception is displayed by Julia, sys.last_traceback and friends are set. This allows the post-mortem debugger pdb.pm() to work. Disable by setting PythonCall.CONFIG.auto_sys_last_traceback = false.

Tabular data / Pandas

The abstract type PyTable is for wrapper types around Python tables, providing the Tables.jl interface. PyTable(x) is shorthand for pyconvert(PyTable, x).

The subtype PyPandasDataFrame wraps a pandas.DataFrame.

For example, if x is a pandas.DataFrame then PyTable(x) is a PyPandasDataFrame and DataFrame(PyTable(x)) is a DataFrame.

In the other direction, the following functions can be used to convert any Tables.jl-compatible table to a Python table.

pytable

MatPlotLib / PyPlot / Seaborn

MatPlotLib figures can be shown with Julia's display mechanism, like display(fig) or display(mime, fig).

This means that if you return a figure from a Jupyter or Pluto notebook cell, it will be shown. You can call display(plt.gcf()) to display the current figure.

We also provide a simple MatPlotLib backend: mpl.use("module://juliacall.matplotlib"). Now you can call plt.show() to display the figure with Julia's display mechanism. You can specify the format like plt.show(format="png").

Python GUIs (including MatPlotLib)

Event loops

If for example you wish to use PyPlot in interactive mode (matplotlib.pyplot.ion()) then activating the correct event loop will allow it to work.

PythonCall.event_loop_on
PythonCall.event_loop_off

Qt path fix

PythonCall.fix_qt_plugin_path

IPython

The juliacall IPython extension adds these features to your IPython session:

  • The line magic %julia code executes the given Julia code in-line.
  • The cell magic %%julia executes a cell of Julia code.
  • Julia's stdout and stderr are redirected to IPython.
  • Calling display(x) from Julia will display x in IPython.

The extension is experimental and unstable - the API can change at any time.

You can explicitly enable the extension with %load_ext juliacall, but it will automatically be loaded if juliacall is imported and IPython is detected. You can disable this behavior with an [environment variable](@ref julia-config).

The %%julia cell magic can synchronise variables between Julia and Python by listing them on the first line:

In [1]: %load_ext juliacall

In [2]: x = 2

In [3]: y = 8

In [4]: %%julia x y z
   ...: z = "$x^$y = $(x^y)";
   ...:
   ...:

In [5]: z
Out[5]: '2^8 = 256'

Also see the IPython docs for more information on extensions.

Asynchronous Julia code (including Makie)

Asynchronous Julia code will not normally run while Python is executing, unless it is in a separate thread.

This can be fixed by calling jl.yield() periodically from Python code, allowing the Julia scheduler to run.

When working at the Python REPL, you may call juliacall.interactive() which will allow Julia async code to run while the prompt is showing. This will allow interactive plots such as Makie to work.