-
Notifications
You must be signed in to change notification settings - Fork 761
/
Copy pathopencl_kde_depth_packet_processor.cpp
887 lines (749 loc) · 31 KB
/
opencl_kde_depth_packet_processor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/*
* This file is part of the OpenKinect Project. http://www.openkinect.org
*
* Copyright (c) 2014 individual OpenKinect contributors. See the CONTRIB file
* for details.
*
* This code is licensed to you under the terms of the Apache License, version
* 2.0, or, at your option, the terms of the GNU General Public License,
* version 2.0. See the APACHE20 and GPL2 files for the text of the licenses,
* or the following URLs:
* http://www.apache.org/licenses/LICENSE-2.0
* http://www.gnu.org/licenses/gpl-2.0.txt
*
* If you redistribute this file in source form, modified or unmodified, you
* may:
* 1) Leave this header intact and distribute it under the same terms,
* accompanying it with the APACHE20 and GPL20 files, or
* 2) Delete the Apache 2.0 clause and accompany it with the GPL2 file, or
* 3) Delete the GPL v2 clause and accompany it with the APACHE20 file
* In all cases you must keep the copyright notice intact and include a copy
* of the CONTRIB file.
*
* Binary distributions must follow the binary distribution requirements of
* either License.
*/
/** @file opencl_depth_packet_processor.cl Implementation of the OpenCL depth packet processor. */
#include <libfreenect2/depth_packet_processor.h>
#include <libfreenect2/resource.h>
#include <libfreenect2/protocol/response.h>
#include <libfreenect2/logging.h>
#include <sstream>
#define _USE_MATH_DEFINES
#include <math.h>
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#define CL_USE_DEPRECATED_OPENCL_2_0_APIS
#ifdef LIBFREENECT2_OPENCL_ICD_LOADER_IS_OLD
#define CL_USE_DEPRECATED_OPENCL_1_1_APIS
#include <CL/cl.h>
#ifdef CL_VERSION_1_2
#undef CL_VERSION_1_2
#endif //CL_VERSION_1_2
#endif //LIBFREENECT2_OPENCL_ICD_LOADER_IS_OLD
#include <CL/cl.hpp>
#ifndef REG_OPENCL_FILE
#define REG_OPENCL_FILE ""
#endif
#include <cstdlib>
#define CHECK_CL_PARAM(expr) do { cl_int err = CL_SUCCESS; (expr); if (err != CL_SUCCESS) { LOG_ERROR << #expr ": " << err; return false; } } while(0)
#define CHECK_CL_RETURN(expr) do { cl_int err = (expr); if (err != CL_SUCCESS) { LOG_ERROR << #expr ": " << err; return false; } } while(0)
#define CHECK_CL_ON_FAIL(expr, on_fail) do { cl_int err = (expr); if (err != CL_SUCCESS) { LOG_ERROR << #expr ": " << err; on_fail; return false; } } while(0)
namespace libfreenect2
{
std::string loadCLKdeSource(const std::string &filename)
{
const unsigned char *data;
size_t length = 0;
if(!loadResource(filename, &data, &length))
{
LOG_ERROR << "failed to load cl source!";
return "";
}
return std::string(reinterpret_cast<const char *>(data), length);
}
class OpenCLKdeDepthPacketProcessorImpl;
class OpenCLKdeBuffer: public Buffer
{
public:
cl::Buffer buffer;
};
class OpenCLKdeAllocator: public Allocator
{
private:
cl::Context &context;
cl::CommandQueue &queue;
const bool isInputBuffer;
bool allocate_opencl(OpenCLKdeBuffer *b, size_t size)
{
if(isInputBuffer)
{
CHECK_CL_PARAM(b->buffer = cl::Buffer(context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, size, NULL, &err));
CHECK_CL_PARAM(b->data = (unsigned char*)queue.enqueueMapBuffer(b->buffer, CL_TRUE, CL_MAP_WRITE, 0, size, NULL, NULL, &err));
}
else
{
CHECK_CL_PARAM(b->buffer = cl::Buffer(context, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, size, NULL, &err));
CHECK_CL_PARAM(b->data = (unsigned char*)queue.enqueueMapBuffer(b->buffer, CL_TRUE, CL_MAP_READ, 0, size, NULL, NULL, &err));
}
b->length = 0;
b->capacity = size;
return true;
}
bool release_opencl(OpenCLKdeBuffer *b)
{
cl::Event event;
CHECK_CL_RETURN(queue.enqueueUnmapMemObject(b->buffer, b->data, NULL, &event));
CHECK_CL_RETURN(event.wait());
return true;
}
public:
OpenCLKdeAllocator(cl::Context &context, cl::CommandQueue &queue, bool isInputBuffer) : context(context), queue(queue), isInputBuffer(isInputBuffer)
{
}
virtual Buffer *allocate(size_t size)
{
OpenCLKdeBuffer *b = new OpenCLKdeBuffer();
if(!allocate_opencl(b, size))
b->data = NULL;
return b;
}
virtual void free(Buffer *b)
{
if(b == NULL)
return;
release_opencl(static_cast<OpenCLKdeBuffer *>(b));
delete b;
}
};
class OpenCLKdeFrame: public Frame
{
private:
OpenCLKdeBuffer *buffer;
public:
OpenCLKdeFrame(OpenCLKdeBuffer *buffer)
: Frame(512, 424, 4, (unsigned char*)-1)
, buffer(buffer)
{
data = buffer->data;
}
virtual ~OpenCLKdeFrame()
{
buffer->allocator->free(buffer);
data = NULL;
}
};
class OpenCLKdeDepthPacketProcessorImpl: public WithPerfLogging
{
public:
static const size_t IMAGE_SIZE = 512*424;
static const size_t LUT_SIZE = 2048;
libfreenect2::DepthPacketProcessor::Config config;
DepthPacketProcessor::Parameters params;
Frame *ir_frame, *depth_frame;
Allocator *input_buffer_allocator;
Allocator *ir_buffer_allocator;
Allocator *depth_buffer_allocator;
cl::Context context;
cl::Device device;
cl::Program program;
cl::CommandQueue queue;
cl::Kernel kernel_processPixelStage1;
cl::Kernel kernel_filterPixelStage1;
cl::Kernel kernel_processPixelStage2_phase;
cl::Kernel kernel_filter_kde;
// Read only buffers
size_t buf_lut11to16_size;
size_t buf_p0_table_size;
size_t buf_x_table_size;
size_t buf_z_table_size;
size_t buf_packet_size;
size_t buf_gauss_kernel_size;
cl::Buffer buf_lut11to16;
cl::Buffer buf_p0_table;
cl::Buffer buf_x_table;
cl::Buffer buf_z_table;
cl::Buffer buf_packet;
// Read-Write buffers
size_t buf_a_size;
size_t buf_b_size;
size_t buf_n_size;
size_t buf_ir_size;
size_t buf_a_filtered_size;
size_t buf_b_filtered_size;
size_t buf_edge_test_size;
size_t buf_depth_size;
size_t buf_ir_sum_size;
size_t buf_phase_conf_size;
cl::Buffer buf_a;
cl::Buffer buf_b;
cl::Buffer buf_n;
cl::Buffer buf_ir;
cl::Buffer buf_a_filtered;
cl::Buffer buf_b_filtered;
cl::Buffer buf_edge_test;
cl::Buffer buf_depth;
cl::Buffer buf_ir_sum;
cl::Buffer buf_conf_1;
cl::Buffer buf_conf_2;
cl::Buffer buf_conf_3;
cl::Buffer buf_phase_1;
cl::Buffer buf_phase_2;
cl::Buffer buf_phase_3;
cl::Buffer buf_gaussian_kernel;
cl::Buffer buf_phase_conf;
bool deviceInitialized;
bool programBuilt;
bool programInitialized;
bool runtimeOk;
std::string sourceCode;
#ifdef LIBFREENECT2_WITH_PROFILING_CL
std::vector<double> timings;
int count;
#endif
OpenCLKdeDepthPacketProcessorImpl(const int deviceId = -1)
: deviceInitialized(false)
, programBuilt(false)
, programInitialized(false)
, runtimeOk(true)
{
#if _BSD_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600
setenv("OCL_IGNORE_SELF_TEST", "1", 0);
setenv("OCL_STRICT_CONFORMANCE", "0", 0);
#endif
deviceInitialized = initDevice(deviceId);
input_buffer_allocator = new PoolAllocator(new OpenCLKdeAllocator(context, queue, true));
ir_buffer_allocator = new PoolAllocator(new OpenCLKdeAllocator(context, queue, false));
depth_buffer_allocator = new PoolAllocator(new OpenCLKdeAllocator(context, queue, false));
newIrFrame();
newDepthFrame();
#if !defined(CL_ICDL_VERSION)
const int CL_ICDL_VERSION = 2;
#endif
typedef cl_int (*icdloader_func)(int, size_t, void*, size_t*);
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4996)
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
icdloader_func clGetICDLoaderInfoOCLICD = (icdloader_func)clGetExtensionFunctionAddress("clGetICDLoaderInfoOCLICD");
#ifdef _MSC_VER
#pragma warning(pop)
#else
#pragma GCC diagnostic pop
#endif
if (clGetICDLoaderInfoOCLICD != NULL)
{
char buf[16];
if (clGetICDLoaderInfoOCLICD(CL_ICDL_VERSION, sizeof(buf), buf, NULL) == CL_SUCCESS)
{
if (strcmp(buf, "2.2.4") < 0)
LOG_WARNING << "Your ocl-icd has deadlock bugs. Update to 2.2.4+ is recommended.";
}
}
}
~OpenCLKdeDepthPacketProcessorImpl()
{
delete ir_frame;
delete depth_frame;
delete input_buffer_allocator;
delete ir_buffer_allocator;
delete depth_buffer_allocator;
}
void generateOptions(std::string &options) const
{
std::ostringstream oss;
oss.precision(16);
oss << std::scientific;
oss << " -D BFI_BITMASK=" << "0x180";
oss << " -D AB_MULTIPLIER=" << params.ab_multiplier << "f";
oss << " -D AB_MULTIPLIER_PER_FRQ0=" << params.ab_multiplier_per_frq[0] << "f";
oss << " -D AB_MULTIPLIER_PER_FRQ1=" << params.ab_multiplier_per_frq[1] << "f";
oss << " -D AB_MULTIPLIER_PER_FRQ2=" << params.ab_multiplier_per_frq[2] << "f";
oss << " -D AB_OUTPUT_MULTIPLIER=" << params.ab_output_multiplier << "f";
oss << " -D PHASE_IN_RAD0=" << params.phase_in_rad[0] << "f";
oss << " -D PHASE_IN_RAD1=" << params.phase_in_rad[1] << "f";
oss << " -D PHASE_IN_RAD2=" << params.phase_in_rad[2] << "f";
oss << " -D JOINT_BILATERAL_AB_THRESHOLD=" << params.joint_bilateral_ab_threshold << "f";
oss << " -D JOINT_BILATERAL_MAX_EDGE=" << params.joint_bilateral_max_edge << "f";
oss << " -D JOINT_BILATERAL_EXP=" << params.joint_bilateral_exp << "f";
oss << " -D JOINT_BILATERAL_THRESHOLD=" << (params.joint_bilateral_ab_threshold * params.joint_bilateral_ab_threshold) / (params.ab_multiplier * params.ab_multiplier) << "f";
oss << " -D GAUSSIAN_KERNEL_0=" << params.gaussian_kernel[0] << "f";
oss << " -D GAUSSIAN_KERNEL_1=" << params.gaussian_kernel[1] << "f";
oss << " -D GAUSSIAN_KERNEL_2=" << params.gaussian_kernel[2] << "f";
oss << " -D GAUSSIAN_KERNEL_3=" << params.gaussian_kernel[3] << "f";
oss << " -D GAUSSIAN_KERNEL_4=" << params.gaussian_kernel[4] << "f";
oss << " -D GAUSSIAN_KERNEL_5=" << params.gaussian_kernel[5] << "f";
oss << " -D GAUSSIAN_KERNEL_6=" << params.gaussian_kernel[6] << "f";
oss << " -D GAUSSIAN_KERNEL_7=" << params.gaussian_kernel[7] << "f";
oss << " -D GAUSSIAN_KERNEL_8=" << params.gaussian_kernel[8] << "f";
oss << " -D PHASE_OFFSET=" << params.phase_offset << "f";
oss << " -D UNAMBIGIOUS_DIST=" << params.unambigious_dist << "f";
oss << " -D INDIVIDUAL_AB_THRESHOLD=" << params.individual_ab_threshold << "f";
oss << " -D AB_THRESHOLD=" << params.ab_threshold << "f";
oss << " -D AB_CONFIDENCE_SLOPE=" << params.ab_confidence_slope << "f";
oss << " -D AB_CONFIDENCE_OFFSET=" << params.ab_confidence_offset << "f";
oss << " -D MIN_DEALIAS_CONFIDENCE=" << params.min_dealias_confidence << "f";
oss << " -D MAX_DEALIAS_CONFIDENCE=" << params.max_dealias_confidence << "f";
oss << " -D EDGE_AB_AVG_MIN_VALUE=" << params.edge_ab_avg_min_value << "f";
oss << " -D EDGE_AB_STD_DEV_THRESHOLD=" << params.edge_ab_std_dev_threshold << "f";
oss << " -D EDGE_CLOSE_DELTA_THRESHOLD=" << params.edge_close_delta_threshold << "f";
oss << " -D EDGE_FAR_DELTA_THRESHOLD=" << params.edge_far_delta_threshold << "f";
oss << " -D EDGE_MAX_DELTA_THRESHOLD=" << params.edge_max_delta_threshold << "f";
oss << " -D EDGE_AVG_DELTA_THRESHOLD=" << params.edge_avg_delta_threshold << "f";
oss << " -D MAX_EDGE_COUNT=" << params.max_edge_count << "f";
oss << " -D MIN_DEPTH=" << config.MinDepth * 1000.0f << "f";
oss << " -D MAX_DEPTH=" << config.MaxDepth * 1000.0f << "f";
oss << " -D KDE_SIGMA_SQR="<<params.kde_sigma_sqr<<"f";
oss << " -D KDE_NEIGBORHOOD_SIZE="<<params.kde_neigborhood_size;
oss << " -D UNWRAPPING_LIKELIHOOD_SCALE="<<params.unwrapping_likelihood_scale<<"f";
oss << " -D PHASE_CONFIDENCE_SCALE="<<params.phase_confidence_scale<<"f";
oss << " -D KDE_THRESHOLD="<<params.kde_threshold<<"f";
oss << " -cl-mad-enable -cl-no-signed-zeros -cl-fast-relaxed-math";
options = oss.str();
}
void getDevices(const std::vector<cl::Platform> &platforms, std::vector<cl::Device> &devices)
{
devices.clear();
for(size_t i = 0; i < platforms.size(); ++i)
{
const cl::Platform &platform = platforms[i];
std::vector<cl::Device> devs;
if(platform.getDevices(CL_DEVICE_TYPE_ALL, &devs) != CL_SUCCESS)
{
continue;
}
devices.insert(devices.end(), devs.begin(), devs.end());
}
}
std::string deviceString(cl::Device &dev)
{
std::string devName, devVendor, devType;
cl_device_type devTypeID;
dev.getInfo(CL_DEVICE_NAME, &devName);
dev.getInfo(CL_DEVICE_VENDOR, &devVendor);
dev.getInfo(CL_DEVICE_TYPE, &devTypeID);
switch(devTypeID)
{
case CL_DEVICE_TYPE_CPU:
devType = "CPU";
break;
case CL_DEVICE_TYPE_GPU:
devType = "GPU";
break;
case CL_DEVICE_TYPE_ACCELERATOR:
devType = "ACCELERATOR";
break;
default:
devType = "CUSTOM/UNKNOWN";
}
return devName + " (" + devType + ")[" + devVendor + ']';
}
void listDevice(std::vector<cl::Device> &devices)
{
LOG_INFO << " devices:";
for(size_t i = 0; i < devices.size(); ++i)
{
LOG_INFO << " " << i << ": " << deviceString(devices[i]);
}
}
bool selectDevice(std::vector<cl::Device> &devices, const int deviceId)
{
if(deviceId != -1 && devices.size() > (size_t)deviceId)
{
device = devices[deviceId];
return true;
}
bool selected = false;
size_t selectedType = 0;
for(size_t i = 0; i < devices.size(); ++i)
{
cl::Device &dev = devices[i];
cl_device_type devTypeID = 0;
dev.getInfo(CL_DEVICE_TYPE, &devTypeID);
if(!selected || (selectedType != CL_DEVICE_TYPE_GPU && devTypeID == CL_DEVICE_TYPE_GPU))
{
selectedType = devTypeID;
selected = true;
device = dev;
}
}
return selected;
}
bool initDevice(const int deviceId)
{
if(!readProgram(sourceCode))
{
return false;
}
std::vector<cl::Platform> platforms;
CHECK_CL_RETURN(cl::Platform::get(&platforms));
if(platforms.empty())
{
LOG_ERROR << "no opencl platforms found.";
return false;
}
std::vector<cl::Device> devices;
getDevices(platforms, devices);
listDevice(devices);
if(!selectDevice(devices, deviceId))
{
LOG_ERROR << "could not find any suitable device";
return false;
}
LOG_INFO << "selected device: " << deviceString(device);
CHECK_CL_PARAM(context = cl::Context(device, NULL, NULL, NULL, &err));
if(!initBuffers())
return false;
return buildProgram(sourceCode);
}
bool initBuffers()
{
#ifdef LIBFREENECT2_WITH_PROFILING_CL
count = 0;
CHECK_CL_PARAM(queue = cl::CommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &err));
#else
CHECK_CL_PARAM(queue = cl::CommandQueue(context, device, 0, &err));
#endif
//Read only
buf_lut11to16_size = LUT_SIZE * sizeof(cl_short);
buf_p0_table_size = IMAGE_SIZE * sizeof(cl_float3);
buf_x_table_size = IMAGE_SIZE * sizeof(cl_float);
buf_z_table_size = IMAGE_SIZE * sizeof(cl_float);
buf_packet_size = ((IMAGE_SIZE * 11) / 16) * 10 * sizeof(cl_ushort);
buf_gauss_kernel_size = (2*params.kde_neigborhood_size+1)*sizeof(cl_float);
CHECK_CL_PARAM(buf_lut11to16 = cl::Buffer(context, CL_MEM_READ_ONLY, buf_lut11to16_size, NULL, &err));
CHECK_CL_PARAM(buf_p0_table = cl::Buffer(context, CL_MEM_READ_ONLY, buf_p0_table_size, NULL, &err));
CHECK_CL_PARAM(buf_x_table = cl::Buffer(context, CL_MEM_READ_ONLY, buf_x_table_size, NULL, &err));
CHECK_CL_PARAM(buf_z_table = cl::Buffer(context, CL_MEM_READ_ONLY, buf_z_table_size, NULL, &err));
CHECK_CL_PARAM(buf_packet = cl::Buffer(context, CL_MEM_READ_ONLY, buf_packet_size, NULL, &err));
CHECK_CL_PARAM(buf_gaussian_kernel = cl::Buffer(context, CL_MEM_READ_ONLY, buf_gauss_kernel_size, NULL, &err));
//Read-Write
buf_a_size = IMAGE_SIZE * sizeof(cl_float3);
buf_b_size = IMAGE_SIZE * sizeof(cl_float3);
buf_n_size = IMAGE_SIZE * sizeof(cl_float3);
buf_ir_size = IMAGE_SIZE * sizeof(cl_float);
buf_a_filtered_size = IMAGE_SIZE * sizeof(cl_float3);
buf_b_filtered_size = IMAGE_SIZE * sizeof(cl_float3);
buf_edge_test_size = IMAGE_SIZE * sizeof(cl_uchar);
buf_depth_size = IMAGE_SIZE * sizeof(cl_float);
buf_ir_sum_size = IMAGE_SIZE * sizeof(cl_float);
buf_phase_conf_size = IMAGE_SIZE * sizeof(cl_float4);
CHECK_CL_PARAM(buf_a = cl::Buffer(context, CL_MEM_READ_WRITE, buf_a_size, NULL, &err));
CHECK_CL_PARAM(buf_b = cl::Buffer(context, CL_MEM_READ_WRITE, buf_b_size, NULL, &err));
CHECK_CL_PARAM(buf_n = cl::Buffer(context, CL_MEM_READ_WRITE, buf_n_size, NULL, &err));
CHECK_CL_PARAM(buf_ir = cl::Buffer(context, CL_MEM_WRITE_ONLY, buf_ir_size, NULL, &err));
CHECK_CL_PARAM(buf_a_filtered = cl::Buffer(context, CL_MEM_READ_WRITE, buf_a_filtered_size, NULL, &err));
CHECK_CL_PARAM(buf_b_filtered = cl::Buffer(context, CL_MEM_READ_WRITE, buf_b_filtered_size, NULL, &err));
CHECK_CL_PARAM(buf_edge_test = cl::Buffer(context, CL_MEM_READ_WRITE, buf_edge_test_size, NULL, &err));
CHECK_CL_PARAM(buf_depth = cl::Buffer(context, CL_MEM_READ_WRITE, buf_depth_size, NULL, &err));
CHECK_CL_PARAM(buf_ir_sum = cl::Buffer(context, CL_MEM_READ_WRITE, buf_ir_sum_size, NULL, &err));
CHECK_CL_PARAM(buf_phase_1 = cl::Buffer(context, CL_MEM_READ_WRITE, buf_depth_size, NULL, &err));
CHECK_CL_PARAM(buf_phase_2 = cl::Buffer(context, CL_MEM_READ_WRITE, buf_depth_size, NULL, &err));
CHECK_CL_PARAM(buf_conf_1 = cl::Buffer(context, CL_MEM_READ_WRITE, buf_depth_size, NULL, &err));
CHECK_CL_PARAM(buf_conf_2 = cl::Buffer(context, CL_MEM_READ_WRITE, buf_depth_size, NULL, &err));
CHECK_CL_PARAM(buf_phase_conf = cl::Buffer(context, CL_MEM_READ_WRITE, buf_phase_conf_size, NULL, &err));
if(params.num_hyps == 3)
{
CHECK_CL_PARAM(buf_phase_3 = cl::Buffer(context, CL_MEM_READ_WRITE, buf_depth_size, NULL, &err));
CHECK_CL_PARAM(buf_conf_3 = cl::Buffer(context, CL_MEM_READ_WRITE, buf_depth_size, NULL, &err));
}
return true;
}
bool initProgram()
{
if(!deviceInitialized)
{
return false;
}
if (!programBuilt)
if (!buildProgram(sourceCode))
return false;
CHECK_CL_PARAM(kernel_processPixelStage1 = cl::Kernel(program, "processPixelStage1", &err));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(0, buf_lut11to16));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(1, buf_z_table));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(2, buf_p0_table));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(3, buf_packet));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(4, buf_a));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(5, buf_b));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(6, buf_n));
CHECK_CL_RETURN(kernel_processPixelStage1.setArg(7, buf_ir));
CHECK_CL_PARAM(kernel_filterPixelStage1 = cl::Kernel(program, "filterPixelStage1", &err));
CHECK_CL_RETURN(kernel_filterPixelStage1.setArg(0, buf_a));
CHECK_CL_RETURN(kernel_filterPixelStage1.setArg(1, buf_b));
CHECK_CL_RETURN(kernel_filterPixelStage1.setArg(2, buf_n));
CHECK_CL_RETURN(kernel_filterPixelStage1.setArg(3, buf_a_filtered));
CHECK_CL_RETURN(kernel_filterPixelStage1.setArg(4, buf_b_filtered));
CHECK_CL_RETURN(kernel_filterPixelStage1.setArg(5, buf_edge_test));
if(params.num_hyps == 3)
{
CHECK_CL_PARAM(kernel_processPixelStage2_phase = cl::Kernel(program, "processPixelStage2_phase3", &err));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(0, config.EnableBilateralFilter ? buf_a_filtered : buf_a));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(1, config.EnableBilateralFilter ? buf_b_filtered : buf_b));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(2, buf_phase_1));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(3, buf_phase_2));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(4, buf_phase_3));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(5, buf_conf_1));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(6, buf_conf_2));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(7, buf_conf_3));
CHECK_CL_PARAM(kernel_filter_kde = cl::Kernel(program, "filter_kde3", &err));
CHECK_CL_RETURN(kernel_filter_kde.setArg(0, buf_phase_1));
CHECK_CL_RETURN(kernel_filter_kde.setArg(1, buf_phase_2));
CHECK_CL_RETURN(kernel_filter_kde.setArg(2, buf_phase_3));
CHECK_CL_RETURN(kernel_filter_kde.setArg(3, buf_conf_1));
CHECK_CL_RETURN(kernel_filter_kde.setArg(4, buf_conf_2));
CHECK_CL_RETURN(kernel_filter_kde.setArg(5, buf_conf_3));
CHECK_CL_RETURN(kernel_filter_kde.setArg(6, buf_gaussian_kernel));
CHECK_CL_RETURN(kernel_filter_kde.setArg(7, buf_z_table));
CHECK_CL_RETURN(kernel_filter_kde.setArg(8, buf_x_table));
CHECK_CL_RETURN(kernel_filter_kde.setArg(9, buf_depth));
}
else
{
CHECK_CL_PARAM(kernel_processPixelStage2_phase = cl::Kernel(program, "processPixelStage2_phase", &err));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(0, config.EnableBilateralFilter ? buf_a_filtered : buf_a));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(1, config.EnableBilateralFilter ? buf_b_filtered : buf_b));
CHECK_CL_RETURN(kernel_processPixelStage2_phase.setArg(2, buf_phase_conf));
CHECK_CL_PARAM(kernel_filter_kde = cl::Kernel(program, "filter_kde", &err));
CHECK_CL_RETURN(kernel_filter_kde.setArg(0, buf_phase_conf));
CHECK_CL_RETURN(kernel_filter_kde.setArg(1, buf_gaussian_kernel));
CHECK_CL_RETURN(kernel_filter_kde.setArg(2, buf_z_table));
CHECK_CL_RETURN(kernel_filter_kde.setArg(3, buf_x_table));
CHECK_CL_RETURN(kernel_filter_kde.setArg(4, buf_depth));
}
programInitialized = true;
return true;
}
bool run(const DepthPacket &packet)
{
std::vector<cl::Event> eventWrite(1), eventPPS1(1), eventFPS1(1), eventPPS2(1), eventFPS2(1);
cl::Event eventReadIr, eventReadDepth;
CHECK_CL_RETURN(queue.enqueueWriteBuffer(buf_packet, CL_FALSE, 0, buf_packet_size, packet.buffer, NULL, &eventWrite[0]));
CHECK_CL_RETURN(queue.enqueueNDRangeKernel(kernel_processPixelStage1, cl::NullRange, cl::NDRange(IMAGE_SIZE), cl::NullRange, &eventWrite, &eventPPS1[0]));
CHECK_CL_RETURN(queue.enqueueReadBuffer(buf_ir, CL_FALSE, 0, buf_ir_size, ir_frame->data, &eventPPS1, &eventReadIr));
if(config.EnableBilateralFilter)
{
CHECK_CL_RETURN(queue.enqueueNDRangeKernel(kernel_filterPixelStage1, cl::NullRange, cl::NDRange(IMAGE_SIZE), cl::NullRange, &eventPPS1, &eventFPS1[0]));
}
else
{
eventFPS1[0] = eventPPS1[0];
}
CHECK_CL_RETURN(queue.enqueueNDRangeKernel(kernel_processPixelStage2_phase, cl::NullRange, cl::NDRange(IMAGE_SIZE), cl::NullRange, &eventFPS1, &eventPPS2[0]));
CHECK_CL_RETURN(queue.enqueueNDRangeKernel(kernel_filter_kde, cl::NullRange, cl::NDRange(IMAGE_SIZE), cl::NullRange, &eventPPS2, &eventFPS2[0]));
CHECK_CL_RETURN(queue.enqueueReadBuffer(buf_depth, CL_FALSE, 0, buf_depth_size, depth_frame->data, &eventFPS2, &eventReadDepth));
CHECK_CL_RETURN(eventReadIr.wait());
CHECK_CL_RETURN(eventReadDepth.wait());
#ifdef LIBFREENECT2_WITH_PROFILING_CL
if(count == 0)
{
timings.clear();
timings.resize(7, 0.0);
}
timings[0] += eventWrite[0].getProfilingInfo<CL_PROFILING_COMMAND_END>() - eventWrite[0].getProfilingInfo<CL_PROFILING_COMMAND_START>();
timings[1] += eventPPS1[0].getProfilingInfo<CL_PROFILING_COMMAND_END>() - eventPPS1[0].getProfilingInfo<CL_PROFILING_COMMAND_START>();
timings[2] += eventFPS1[0].getProfilingInfo<CL_PROFILING_COMMAND_END>() - eventFPS1[0].getProfilingInfo<CL_PROFILING_COMMAND_START>();
timings[3] += eventPPS2[0].getProfilingInfo<CL_PROFILING_COMMAND_END>() - eventPPS2[0].getProfilingInfo<CL_PROFILING_COMMAND_START>();
timings[4] += eventFPS2[0].getProfilingInfo<CL_PROFILING_COMMAND_END>() - eventFPS2[0].getProfilingInfo<CL_PROFILING_COMMAND_START>();
timings[5] += eventReadIr.getProfilingInfo<CL_PROFILING_COMMAND_END>() - eventReadIr.getProfilingInfo<CL_PROFILING_COMMAND_START>();
timings[6] += eventReadDepth.getProfilingInfo<CL_PROFILING_COMMAND_END>() - eventReadDepth.getProfilingInfo<CL_PROFILING_COMMAND_START>();
if(++count == 100)
{
double sum = timings[0] + timings[1] + timings[2] + timings[3] + timings[4] + timings[5] + timings[6];
LOG_INFO << "writing package: " << timings[0] / 100000000.0 << " ms.";
LOG_INFO << "stage 1: " << timings[1] / 100000000.0 << " ms.";
LOG_INFO << "filter 1: " << timings[2] / 100000000.0 << " ms.";
LOG_INFO << "stage 2: " << timings[3] / 100000000.0 << " ms.";
LOG_INFO << "filter 2: " << timings[4] / 100000000.0 << " ms.";
LOG_INFO << "reading ir: " << timings[5] / 100000000.0 << " ms.";
LOG_INFO << "reading depth: " << timings[6] / 100000000.0 << " ms.";
LOG_INFO << "overall: " << sum / 100000000.0 << " ms.";
count = 0;
}
#endif
return true;
}
bool readProgram(std::string &source) const
{
source = loadCLKdeSource("opencl_kde_depth_packet_processor.cl");
return !source.empty();
}
bool buildProgram(const std::string &sources)
{
LOG_INFO << "building OpenCL program...";
std::string options;
generateOptions(options);
cl::Program::Sources source(1, std::make_pair(sources.c_str(), sources.length()));
CHECK_CL_PARAM(program = cl::Program(context, source, &err));
CHECK_CL_ON_FAIL(program.build(options.c_str()),
LOG_ERROR << "failed to build program: " << err;
LOG_ERROR << "Build Status: " << program.getBuildInfo<CL_PROGRAM_BUILD_STATUS>(device);
LOG_ERROR << "Build Options:\t" << program.getBuildInfo<CL_PROGRAM_BUILD_OPTIONS>(device);
LOG_ERROR << "Build Log:\t " << program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device));
LOG_INFO << "OpenCL program built successfully";
programBuilt = true;
return true;
}
void newIrFrame()
{
ir_frame = new OpenCLKdeFrame(static_cast<OpenCLKdeBuffer *>(ir_buffer_allocator->allocate(IMAGE_SIZE * sizeof(cl_float))));
ir_frame->format = Frame::Float;
}
void newDepthFrame()
{
depth_frame = new OpenCLKdeFrame(static_cast<OpenCLKdeBuffer *>(depth_buffer_allocator->allocate(IMAGE_SIZE * sizeof(cl_float))));
depth_frame->format = Frame::Float;
}
bool fill_trig_table(const libfreenect2::protocol::P0TablesResponse *p0table)
{
if(!deviceInitialized)
{
LOG_ERROR << "OpenCLKdeDepthPacketProcessor is not initialized!";
return false;
}
cl_float3 *p0_table = new cl_float3[IMAGE_SIZE];
for(int r = 0; r < 424; ++r)
{
cl_float3 *it = &p0_table[r * 512];
const uint16_t *it0 = &p0table->p0table0[r * 512];
const uint16_t *it1 = &p0table->p0table1[r * 512];
const uint16_t *it2 = &p0table->p0table2[r * 512];
for(int c = 0; c < 512; ++c, ++it, ++it0, ++it1, ++it2)
{
it->s[0] = -((float)*it0) * 0.000031 * M_PI;
it->s[1] = -((float)*it1) * 0.000031 * M_PI;
it->s[2] = -((float)*it2) * 0.000031 * M_PI;
it->s[3] = 0.0f;
}
}
cl::Event event;
CHECK_CL_ON_FAIL(queue.enqueueWriteBuffer(buf_p0_table, CL_FALSE, 0, buf_p0_table_size, p0_table, NULL, &event), delete[] p0_table);
CHECK_CL_ON_FAIL(event.wait(), delete[] p0_table);
delete[] p0_table;
return true;
}
bool fill_xz_tables(const float *xtable, const float *ztable)
{
if(!deviceInitialized)
{
LOG_ERROR << "OpenCLKdeDepthPacketProcessor is not initialized!";
return false;
}
cl::Event event0, event1;
CHECK_CL_RETURN(queue.enqueueWriteBuffer(buf_x_table, CL_FALSE, 0, buf_x_table_size, xtable, NULL, &event0));
CHECK_CL_RETURN(queue.enqueueWriteBuffer(buf_z_table, CL_FALSE, 0, buf_z_table_size, ztable, NULL, &event1));
float* gauss_kernel;
createGaussianKernel(&gauss_kernel, params.kde_neigborhood_size);
cl::Event event2;
CHECK_CL_RETURN(queue.enqueueWriteBuffer(buf_gaussian_kernel, CL_FALSE, 0, buf_gauss_kernel_size, gauss_kernel, NULL, &event2));
CHECK_CL_RETURN(event0.wait());
CHECK_CL_RETURN(event1.wait());
CHECK_CL_RETURN(event2.wait());
return true;
}
bool fill_lut(const short *lut)
{
if(!deviceInitialized)
{
LOG_ERROR << "OpenCLKdeDepthPacketProcessor is not initialized!";
return false;
}
cl::Event event;
CHECK_CL_RETURN(queue.enqueueWriteBuffer(buf_lut11to16, CL_FALSE, 0, buf_lut11to16_size, lut, NULL, &event));
CHECK_CL_RETURN(event.wait());
return true;
}
//initialize spatial weights
void createGaussianKernel(float** kernel, int size)
{
*kernel = new float[2*size+1];
float sigma = 0.5f*(float)size;
for(int i = -size; i <= size; i++)
{
(*kernel)[i+size] = exp(-0.5f*i*i/(sigma*sigma));
}
}
};
OpenCLKdeDepthPacketProcessor::OpenCLKdeDepthPacketProcessor(const int deviceId) :
impl_(new OpenCLKdeDepthPacketProcessorImpl(deviceId))
{
}
OpenCLKdeDepthPacketProcessor::~OpenCLKdeDepthPacketProcessor()
{
delete impl_;
}
void OpenCLKdeDepthPacketProcessor::setConfiguration(const libfreenect2::DepthPacketProcessor::Config &config)
{
DepthPacketProcessor::setConfiguration(config);
if ( impl_->config.MaxDepth != config.MaxDepth
|| impl_->config.MinDepth != config.MinDepth)
{
// OpenCL program needs to be rebuilt, then reinitialized
impl_->programBuilt = false;
impl_->programInitialized = false;
}
else if (impl_->config.EnableBilateralFilter != config.EnableBilateralFilter
|| impl_->config.EnableEdgeAwareFilter != config.EnableEdgeAwareFilter)
{
// OpenCL program only needs to be reinitialized
impl_->programInitialized = false;
}
impl_->config = config;
if (!impl_->programBuilt)
impl_->buildProgram(impl_->sourceCode);
}
void OpenCLKdeDepthPacketProcessor::loadP0TablesFromCommandResponse(unsigned char *buffer, size_t buffer_length)
{
libfreenect2::protocol::P0TablesResponse *p0table = (libfreenect2::protocol::P0TablesResponse *)buffer;
if(buffer_length < sizeof(libfreenect2::protocol::P0TablesResponse))
{
LOG_ERROR << "P0Table response too short!";
return;
}
impl_->fill_trig_table(p0table);
}
void OpenCLKdeDepthPacketProcessor::loadXZTables(const float *xtable, const float *ztable)
{
impl_->fill_xz_tables(xtable, ztable);
}
void OpenCLKdeDepthPacketProcessor::loadLookupTable(const short *lut)
{
impl_->fill_lut(lut);
}
bool OpenCLKdeDepthPacketProcessor::good()
{
return impl_->deviceInitialized && impl_->runtimeOk;
}
void OpenCLKdeDepthPacketProcessor::process(const DepthPacket &packet)
{
if (!listener_)
return;
if(!impl_->programInitialized && !impl_->initProgram())
{
impl_->runtimeOk = false;
LOG_ERROR << "could not initialize OpenCLKdeDepthPacketProcessor";
return;
}
impl_->startTiming();
impl_->ir_frame->timestamp = packet.timestamp;
impl_->depth_frame->timestamp = packet.timestamp;
impl_->ir_frame->sequence = packet.sequence;
impl_->depth_frame->sequence = packet.sequence;
impl_->runtimeOk = impl_->run(packet);
impl_->stopTiming(LOG_INFO);
if (!impl_->runtimeOk)
{
impl_->ir_frame->status = 1;
impl_->depth_frame->status = 1;
}
if(listener_->onNewFrame(Frame::Ir, impl_->ir_frame))
impl_->newIrFrame();
if(listener_->onNewFrame(Frame::Depth, impl_->depth_frame))
impl_->newDepthFrame();
}
Allocator *OpenCLKdeDepthPacketProcessor::getAllocator()
{
return impl_->input_buffer_allocator;
}
} /* namespace libfreenect2 */