@@ -127,38 +127,38 @@ def test_esn_output_unchanged() -> None:
127
127
esn = ESNClassifier (hidden_layer_size = 50 ).fit (X , y )
128
128
print (esn )
129
129
shape2 = y [0 ].shape
130
- assert (shape1 == shape2 )
130
+ assert (shape1 == shape2 )
131
131
132
132
133
133
def test_esn_classifier_sequence_to_value () -> None :
134
134
X , y = load_digits (return_X_y = True , as_sequence = True )
135
135
esn = ESNClassifier (hidden_layer_size = 50 ).fit (X , y )
136
136
y_pred = esn .predict (X )
137
- assert (len (y ) == len (y_pred ))
138
- assert (len (y_pred [0 ]) == 1 )
139
- assert (esn .sequence_to_value is True )
140
- assert (esn .decision_strategy == "winner_takes_all" )
137
+ assert (len (y ) == len (y_pred ))
138
+ assert (len (y_pred [0 ]) == 1 )
139
+ assert (esn .sequence_to_value is True )
140
+ assert (esn .decision_strategy == "winner_takes_all" )
141
141
y_pred = esn .predict_proba (X )
142
- assert (y_pred [0 ].ndim == 1 )
142
+ assert (y_pred [0 ].ndim == 1 )
143
143
y_pred = esn .predict_log_proba (X )
144
- assert (y_pred [0 ].ndim == 1 )
144
+ assert (y_pred [0 ].ndim == 1 )
145
145
esn .sequence_to_value = False
146
146
y_pred = esn .predict (X )
147
- assert (len (y_pred [0 ]) == 8 )
147
+ assert (len (y_pred [0 ]) == 8 )
148
148
y_pred = esn .predict_proba (X )
149
- assert (y_pred [0 ].ndim == 2 )
149
+ assert (y_pred [0 ].ndim == 2 )
150
150
y_pred = esn .predict_log_proba (X )
151
- assert (y_pred [0 ].ndim == 2 )
151
+ assert (y_pred [0 ].ndim == 2 )
152
152
153
153
154
154
def test_esn_classifier_instance_fit () -> None :
155
155
X , y = load_digits (return_X_y = True , as_sequence = True )
156
156
esn = ESNClassifier (hidden_layer_size = 50 ).fit (X [0 ], np .repeat (y [0 ], 8 ))
157
- assert (esn .sequence_to_value is False )
157
+ assert (esn .sequence_to_value is False )
158
158
y_pred = esn .predict_proba (X [0 ])
159
- assert (y_pred .ndim == 2 )
159
+ assert (y_pred .ndim == 2 )
160
160
y_pred = esn .predict_log_proba (X [0 ])
161
- assert (y_pred .ndim == 2 )
161
+ assert (y_pred .ndim == 2 )
162
162
163
163
164
164
def test_esn_classifier_partial_fit () -> None :
0 commit comments