-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmeandice.py
281 lines (240 loc) · 13.2 KB
/
meandice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import torch
from monai.metrics.utils import do_metric_reduction
from monai.utils import MetricReduction
from .metric import CumulativeIterationMetric
__all__ = ["DiceMetric", "compute_dice", "DiceHelper"]
class DiceMetric(CumulativeIterationMetric):
"""
Compute average Dice score for a set of pairs of prediction-groundtruth segmentations.
It supports both multi-classes and multi-labels tasks.
Input `y_pred` is compared with ground truth `y`.
`y_pred` is expected to have binarized predictions and `y` can be single-channel class indices or in the
one-hot format. The `include_background` parameter can be set to ``False`` to exclude
the first category (channel index 0) which is by convention assumed to be background. If the non-background
segmentations are small compared to the total image size they can get overwhelmed by the signal from the
background. `y_preds` and `y` can be a list of channel-first Tensor (CHW[D]) or a batch-first Tensor (BCHW[D]),
`y` can also be in the format of `B1HW[D]`.
Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`.
Args:
include_background: whether to include Dice computation on the first channel of
the predicted output. Defaults to ``True``.
reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values,
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``,
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction.
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans).
Here `not_nans` count the number of not nans for the metric, thus its shape equals to the shape of the metric.
ignore_empty: whether to ignore empty ground truth cases during calculation.
If `True`, NaN value will be set for empty ground truth cases.
If `False`, 1 will be set if the predictions of empty ground truth cases are also empty.
num_classes: number of input channels (always including the background). When this is None,
``y_pred.shape[1]`` will be used. This option is useful when both ``y_pred`` and ``y`` are
single-channel class indices and the number of classes is not automatically inferred from data.
return_with_label: whether to return the metrics with label, only works when reduction is "mean_batch".
If `True`, use "label_{index}" as the key corresponding to C channels; if 'include_background' is True,
the index begins at "0", otherwise at "1". It can also take a list of label names.
The outcome will then be returned as a dictionary.
"""
def __init__(
self,
include_background: bool = True,
reduction: MetricReduction | str = MetricReduction.MEAN,
get_not_nans: bool = False,
ignore_empty: bool = True,
num_classes: int | None = None,
return_with_label: bool | list[str] = False,
) -> None:
super().__init__()
self.include_background = include_background
self.reduction = reduction
self.get_not_nans = get_not_nans
self.ignore_empty = ignore_empty
self.num_classes = num_classes
self.return_with_label = return_with_label
self.dice_helper = DiceHelper(
include_background=self.include_background,
reduction=MetricReduction.NONE,
get_not_nans=False,
softmax=False,
ignore_empty=self.ignore_empty,
num_classes=self.num_classes,
)
def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: # type: ignore[override]
"""
Args:
y_pred: input data to compute, typical segmentation model output.
It must be one-hot format and first dim is batch, example shape: [16, 3, 32, 32]. The values
should be binarized.
y: ground truth to compute mean Dice metric. `y` can be single-channel class indices or
in the one-hot format.
Raises:
ValueError: when `y_pred` has less than three dimensions.
"""
dims = y_pred.ndimension()
if dims < 3:
raise ValueError(f"y_pred should have at least 3 dimensions (batch, channel, spatial), got {dims}.")
# compute dice (BxC) for each channel for each batch
return self.dice_helper(y_pred=y_pred, y=y) # type: ignore
def aggregate(
self, reduction: MetricReduction | str | None = None
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
"""
Execute reduction and aggregation logic for the output of `compute_dice`.
Args:
reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values,
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``,
``"mean_channel"``, ``"sum_channel"``}, default to `self.reduction`. if "none", will not do reduction.
"""
data = self.get_buffer()
if not isinstance(data, torch.Tensor):
raise ValueError(f"the data to aggregate must be PyTorch Tensor, got {type(data)}.")
# do metric reduction
f, not_nans = do_metric_reduction(data, reduction or self.reduction)
if self.reduction == MetricReduction.MEAN_BATCH and self.return_with_label:
_f = {}
if isinstance(self.return_with_label, bool):
for i, v in enumerate(f):
_label_key = f"label_{i+1}" if not self.include_background else f"label_{i}"
_f[_label_key] = round(v.item(), 4)
else:
for key, v in zip(self.return_with_label, f):
_f[key] = round(v.item(), 4)
f = _f
return (f, not_nans) if self.get_not_nans else f
def compute_dice(
y_pred: torch.Tensor,
y: torch.Tensor,
include_background: bool = True,
ignore_empty: bool = True,
num_classes: int | None = None,
) -> torch.Tensor:
"""Computes Dice score metric for a batch of predictions.
Args:
y_pred: input data to compute, typical segmentation model output.
`y_pred` can be single-channel class indices or in the one-hot format.
y: ground truth to compute mean dice metric. `y` can be single-channel class indices or in the one-hot format.
include_background: whether to include Dice computation on the first channel of
the predicted output. Defaults to True.
ignore_empty: whether to ignore empty ground truth cases during calculation.
If `True`, NaN value will be set for empty ground truth cases.
If `False`, 1 will be set if the predictions of empty ground truth cases are also empty.
num_classes: number of input channels (always including the background). When this is None,
``y_pred.shape[1]`` will be used. This option is useful when both ``y_pred`` and ``y`` are
single-channel class indices and the number of classes is not automatically inferred from data.
Returns:
Dice scores per batch and per class, (shape: [batch_size, num_classes]).
"""
return DiceHelper( # type: ignore
include_background=include_background,
reduction=MetricReduction.NONE,
get_not_nans=False,
softmax=False,
ignore_empty=ignore_empty,
num_classes=num_classes,
)(y_pred=y_pred, y=y)
class DiceHelper:
"""
Compute Dice score between two tensors `y_pred` and `y`.
`y_pred` and `y` can be single-channel class indices or in the one-hot format.
Example:
.. code-block:: python
import torch
from monai.metrics import DiceHelper
n_classes, batch_size = 5, 16
spatial_shape = (128, 128, 128)
y_pred = torch.rand(batch_size, n_classes, *spatial_shape).float() # predictions
y = torch.randint(0, n_classes, size=(batch_size, 1, *spatial_shape)).long() # ground truth
score, not_nans = DiceHelper(include_background=False, sigmoid=True, softmax=True)(y_pred, y)
print(score, not_nans)
"""
def __init__(
self,
include_background: bool | None = None,
sigmoid: bool = False,
softmax: bool | None = None,
activate: bool = False,
get_not_nans: bool = True,
reduction: MetricReduction | str = MetricReduction.MEAN_BATCH,
ignore_empty: bool = True,
num_classes: int | None = None,
) -> None:
"""
Args:
include_background: whether to include the score on the first channel
(default to the value of `sigmoid`, False).
sigmoid: whether ``y_pred`` are/will be sigmoid activated outputs. If True, thresholding at 0.5
will be performed to get the discrete prediction. Defaults to False.
softmax: whether ``y_pred`` are softmax activated outputs. If True, `argmax` will be performed to
get the discrete prediction. Defaults to the value of ``not sigmoid``.
activate: whether to apply sigmoid to ``y_pred`` if ``sigmoid`` is True. Defaults to False.
This option is only valid when ``sigmoid`` is True.
get_not_nans: whether to return the number of not-nan values.
reduction: define mode of reduction to the metrics
ignore_empty: if `True`, NaN value will be set for empty ground truth cases.
If `False`, 1 will be set if the Union of ``y_pred`` and ``y`` is empty.
num_classes: number of input channels (always including the background). When this is None,
``y_pred.shape[1]`` will be used. This option is useful when both ``y_pred`` and ``y`` are
single-channel class indices and the number of classes is not automatically inferred from data.
"""
self.sigmoid = sigmoid
self.reduction = reduction
self.get_not_nans = get_not_nans
self.include_background = sigmoid if include_background is None else include_background
self.softmax = not sigmoid if softmax is None else softmax
self.activate = activate
self.ignore_empty = ignore_empty
self.num_classes = num_classes
def compute_channel(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
""""""
y_o = torch.sum(y)
if y_o > 0:
return (2.0 * torch.sum(torch.masked_select(y, y_pred))) / (y_o + torch.sum(y_pred))
if self.ignore_empty:
return torch.tensor(float("nan"), device=y_o.device)
denorm = y_o + torch.sum(y_pred)
if denorm <= 0:
return torch.tensor(1.0, device=y_o.device)
return torch.tensor(0.0, device=y_o.device)
def __call__(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
"""
Args:
y_pred: input predictions with shape (batch_size, num_classes or 1, spatial_dims...).
the number of channels is inferred from ``y_pred.shape[1]`` when ``num_classes is None``.
y: ground truth with shape (batch_size, num_classes or 1, spatial_dims...).
"""
_softmax, _sigmoid = self.softmax, self.sigmoid
if self.num_classes is None:
n_pred_ch = y_pred.shape[1] # y_pred is in one-hot format or multi-channel scores
else:
n_pred_ch = self.num_classes
if y_pred.shape[1] == 1 and self.num_classes > 1: # y_pred is single-channel class indices
_softmax = _sigmoid = False
if _softmax:
if n_pred_ch > 1:
y_pred = torch.argmax(y_pred, dim=1, keepdim=True)
elif _sigmoid:
if self.activate:
y_pred = torch.sigmoid(y_pred)
y_pred = y_pred > 0.5
first_ch = 0 if self.include_background else 1
data = []
for b in range(y_pred.shape[0]):
c_list = []
for c in range(first_ch, n_pred_ch) if n_pred_ch > 1 else [1]:
x_pred = (y_pred[b, 0] == c) if (y_pred.shape[1] == 1) else y_pred[b, c].bool()
x = (y[b, 0] == c) if (y.shape[1] == 1) else y[b, c]
c_list.append(self.compute_channel(x_pred, x))
data.append(torch.stack(c_list))
data = torch.stack(data, dim=0).contiguous() # type: ignore
f, not_nans = do_metric_reduction(data, self.reduction) # type: ignore
return (f, not_nans) if self.get_not_nans else f