-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathinferer.py
2035 lines (1797 loc) · 90.6 KB
/
inferer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import math
import warnings
from abc import ABC, abstractmethod
from collections.abc import Callable, Iterable, Iterator, Mapping, Sequence
from functools import partial
from pydoc import locate
from typing import Any
import torch
import torch.nn as nn
import torch.nn.functional as F
from monai.apps.utils import get_logger
from monai.data import decollate_batch
from monai.data.meta_tensor import MetaTensor
from monai.data.thread_buffer import ThreadBuffer
from monai.inferers.merger import AvgMerger, Merger
from monai.inferers.splitter import Splitter
from monai.inferers.utils import compute_importance_map, sliding_window_inference
from monai.networks.nets import (
VQVAE,
AutoencoderKL,
ControlNet,
DecoderOnlyTransformer,
DiffusionModelUNet,
SPADEAutoencoderKL,
SPADEDiffusionModelUNet,
)
from monai.networks.schedulers import Scheduler
from monai.transforms import CenterSpatialCrop, SpatialPad
from monai.utils import BlendMode, Ordering, PatchKeys, PytorchPadMode, ensure_tuple, optional_import
from monai.visualize import CAM, GradCAM, GradCAMpp
tqdm, has_tqdm = optional_import("tqdm", name="tqdm")
logger = get_logger(__name__)
__all__ = [
"Inferer",
"PatchInferer",
"SimpleInferer",
"SlidingWindowInferer",
"SaliencyInferer",
"SliceInferer",
"SlidingWindowInfererAdapt",
]
class Inferer(ABC):
"""
A base class for model inference.
Extend this class to support operations during inference, e.g. a sliding window method.
Example code::
device = torch.device("cuda:0")
transform = Compose([ToTensor(), LoadImage(image_only=True)])
data = transform(img_path).to(device)
model = UNet(...).to(device)
inferer = SlidingWindowInferer(...)
model.eval()
with torch.no_grad():
pred = inferer(inputs=data, network=model)
...
"""
@abstractmethod
def __call__(self, inputs: torch.Tensor, network: Callable, *args: Any, **kwargs: Any) -> Any:
"""
Run inference on `inputs` with the `network` model.
Args:
inputs: input of the model inference.
network: model for inference.
args: optional args to be passed to ``network``.
kwargs: optional keyword args to be passed to ``network``.
Raises:
NotImplementedError: When the subclass does not override this method.
"""
raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.")
class PatchInferer(Inferer):
"""
Inference on patches instead of the whole image based on Splitter and Merger.
This splits the input image into patches and then merge the resulted patches.
Args:
splitter: a `Splitter` object that split the inputs into patches. Defaults to None.
If not provided or None, the inputs are considered to be already split into patches.
In this case, the output `merged_shape` and the optional `cropped_shape` cannot be inferred
and should be explicitly provided.
merger_cls: a `Merger` subclass that can be instantiated to merges patch outputs.
It can also be a string that matches the name of a class inherited from `Merger` class.
Defaults to `AvgMerger`.
batch_size: batch size for patches. If the input tensor is already batched [BxCxWxH],
this adds additional batching [(Bp*B)xCxWpxHp] for inference on patches.
Defaults to 1.
preprocessing: a callable that process patches before the being fed to the network.
Defaults to None.
postprocessing: a callable that process the output of the network.
Defaults to None.
output_keys: if the network output is a dictionary, this defines the keys of
the output dictionary to be used for merging.
Defaults to None, where all the keys are used.
match_spatial_shape: whether to crop the output to match the input shape. Defaults to True.
buffer_size: number of patches to be held in the buffer with a separate thread for batch sampling. Defaults to 0.
merger_kwargs: arguments to be passed to `merger_cls` for instantiation.
`merged_shape` is calculated automatically based on the input shape and
the output patch shape unless it is passed here.
"""
def __init__(
self,
splitter: Splitter | None = None,
merger_cls: type[Merger] | str = AvgMerger,
batch_size: int = 1,
preprocessing: Callable | None = None,
postprocessing: Callable | None = None,
output_keys: Sequence | None = None,
match_spatial_shape: bool = True,
buffer_size: int = 0,
**merger_kwargs: Any,
) -> None:
Inferer.__init__(self)
# splitter
if not isinstance(splitter, (Splitter, type(None))):
if not isinstance(splitter, Splitter):
raise TypeError(
f"'splitter' should be a `Splitter` object that returns: "
"an iterable of pairs of (patch, location) or a MetaTensor that has `PatchKeys.LOCATION` metadata)."
f"{type(splitter)} is given."
)
self.splitter = splitter
# merger
if isinstance(merger_cls, str):
valid_merger_cls: type[Merger]
# search amongst implemented mergers in MONAI
valid_merger_cls, merger_found = optional_import("monai.inferers.merger", name=merger_cls)
if not merger_found:
# try to locate the requested merger class (with dotted path)
valid_merger_cls = locate(merger_cls) # type: ignore
if valid_merger_cls is None:
raise ValueError(f"The requested `merger_cls` ['{merger_cls}'] does not exist.")
merger_cls = valid_merger_cls
if not issubclass(merger_cls, Merger):
raise TypeError(f"'merger' should be a subclass of `Merger`, {merger_cls} is given.")
self.merger_cls = merger_cls
self.merger_kwargs = merger_kwargs
# pre-processor (process patch before the network)
if preprocessing is not None and not callable(preprocessing):
raise TypeError(f"'preprocessing' should be a callable object, {type(preprocessing)} is given.")
self.preprocessing = preprocessing
# post-processor (process the output of the network)
if postprocessing is not None and not callable(postprocessing):
raise TypeError(f"'postprocessing' should be a callable object, {type(postprocessing)} is given.")
self.postprocessing = postprocessing
# batch size for patches
if batch_size < 1:
raise ValueError(f"`batch_size` must be a positive number, {batch_size} is given.")
self.batch_size = batch_size
# model output keys
self.output_keys = output_keys
# whether to crop the output to match the input shape
self.match_spatial_shape = match_spatial_shape
# buffer size for multithreaded batch sampling
self.buffer_size = buffer_size
def _batch_sampler(
self, patches: Iterable[tuple[torch.Tensor, Sequence[int]]] | MetaTensor
) -> Iterator[tuple[torch.Tensor, Sequence, int]]:
"""Generate batch of patches and locations
Args:
patches: a tensor or list of tensors
Yields:
A batch of patches (torch.Tensor or MetaTensor), a sequence of location tuples, and the batch size
"""
if isinstance(patches, MetaTensor):
total_size = len(patches)
for i in range(0, total_size, self.batch_size):
batch_size = min(self.batch_size, total_size - i)
yield patches[i : i + batch_size], patches[i : i + batch_size].meta[PatchKeys.LOCATION], batch_size # type: ignore
else:
buffer: Iterable | ThreadBuffer
if self.buffer_size > 0:
# Use multi-threading to sample patches with a buffer
buffer = ThreadBuffer(patches, buffer_size=self.buffer_size, timeout=0.1)
else:
buffer = patches
patch_batch: list[Any] = [None] * self.batch_size
location_batch: list[Any] = [None] * self.batch_size
idx_in_batch = 0
for sample in buffer:
patch_batch[idx_in_batch] = sample[0]
location_batch[idx_in_batch] = sample[1]
idx_in_batch += 1
if idx_in_batch == self.batch_size:
# concatenate batch of patches to create a tensor
yield torch.cat(patch_batch), location_batch, idx_in_batch
patch_batch = [None] * self.batch_size
location_batch = [None] * self.batch_size
idx_in_batch = 0
if idx_in_batch > 0:
# concatenate batch of patches to create a tensor
yield torch.cat(patch_batch[:idx_in_batch]), location_batch, idx_in_batch
def _ensure_tuple_outputs(self, outputs: Any) -> tuple:
if isinstance(outputs, dict):
if self.output_keys is None:
self.output_keys = list(outputs.keys()) # model's output keys
return tuple(outputs[k] for k in self.output_keys)
return ensure_tuple(outputs, wrap_array=True)
def _run_inference(self, network: Callable, patch: torch.Tensor, *args: Any, **kwargs: Any) -> tuple:
# pre-process
if self.preprocessing:
patch = self.preprocessing(patch)
# inference
outputs = network(patch, *args, **kwargs)
# post-process
if self.postprocessing:
outputs = self.postprocessing(outputs)
# ensure we have a tuple of model outputs to support multiple outputs
return self._ensure_tuple_outputs(outputs)
def _initialize_mergers(self, inputs, outputs, patches, batch_size):
in_patch = torch.chunk(patches, batch_size)[0]
mergers = []
ratios = []
for out_patch_batch in outputs:
out_patch = torch.chunk(out_patch_batch, batch_size)[0]
# calculate the ratio of input and output patch sizes
ratio = tuple(op / ip for ip, op in zip(in_patch.shape[2:], out_patch.shape[2:]))
# calculate merged_shape and cropped_shape
merger_kwargs = self.merger_kwargs.copy()
cropped_shape, merged_shape = self._get_merged_shapes(inputs, out_patch, ratio)
if "merged_shape" not in merger_kwargs:
merger_kwargs["merged_shape"] = merged_shape
if merger_kwargs["merged_shape"] is None:
raise ValueError("`merged_shape` cannot be `None`.")
if "cropped_shape" not in merger_kwargs:
merger_kwargs["cropped_shape"] = cropped_shape
# initialize the merger
merger = self.merger_cls(**merger_kwargs)
# store mergers and input/output ratios
mergers.append(merger)
ratios.append(ratio)
return mergers, ratios
def _aggregate(self, outputs, locations, batch_size, mergers, ratios):
for output_patches, merger, ratio in zip(outputs, mergers, ratios):
# split batched output into individual patches and then aggregate
for in_loc, out_patch in zip(locations, torch.chunk(output_patches, batch_size)):
out_loc = [round(l * r) for l, r in zip(in_loc, ratio)]
merger.aggregate(out_patch, out_loc)
def _get_merged_shapes(self, inputs, out_patch, ratio):
"""Define the shape of merged tensors (non-padded and padded)"""
if self.splitter is None:
return None, None
# input spatial shapes
original_spatial_shape = self.splitter.get_input_shape(inputs)
padded_spatial_shape = self.splitter.get_padded_shape(inputs)
# output spatial shapes
output_spatial_shape = tuple(round(s * r) for s, r in zip(original_spatial_shape, ratio))
padded_output_spatial_shape = tuple(round(s * r) for s, r in zip(padded_spatial_shape, ratio))
# output shapes
cropped_shape = out_patch.shape[:2] + output_spatial_shape
merged_shape = out_patch.shape[:2] + padded_output_spatial_shape
if not self.match_spatial_shape:
cropped_shape = merged_shape
return cropped_shape, merged_shape
def __call__(
self,
inputs: torch.Tensor,
network: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
*args: Any,
**kwargs: Any,
) -> Any:
"""
Args:
inputs: input data for inference, a torch.Tensor, representing an image or batch of images.
However if the data is already split, it can be fed by providing a list of tuple (patch, location),
or a MetaTensor that has metadata for `PatchKeys.LOCATION`. In both cases no splitter should be provided.
network: target model to execute inference.
supports callables such as ``lambda x: my_torch_model(x, additional_config)``
args: optional args to be passed to ``network``.
kwargs: optional keyword args to be passed to ``network``.
"""
patches_locations: Iterable[tuple[torch.Tensor, Sequence[int]]] | MetaTensor
if self.splitter is None:
# handle situations where the splitter is not provided
if isinstance(inputs, torch.Tensor):
if isinstance(inputs, MetaTensor):
if PatchKeys.LOCATION not in inputs.meta:
raise ValueError(
"`PatchKey.LOCATION` does not exists in `inputs.meta`. "
"If the inputs are already split into patches, the location of patches needs to be "
"provided as `PatchKey.LOCATION` metadata in a MetaTensor. "
"If the input is not already split, please provide `splitter`."
)
else:
raise ValueError(
"`splitter` should be set if the input is not already split into patches. "
"For inputs that are split, the location of patches needs to be provided as "
"(image, location) pairs, or as `PatchKey.LOCATION` metadata in a MetaTensor. "
f"The provided inputs type is {type(inputs)}."
)
patches_locations = inputs
else:
# apply splitter
patches_locations = self.splitter(inputs)
ratios: list[float] = []
mergers: list[Merger] = []
for patches, locations, batch_size in self._batch_sampler(patches_locations):
# run inference
outputs = self._run_inference(network, patches, *args, **kwargs)
# initialize the mergers
if not mergers:
mergers, ratios = self._initialize_mergers(inputs, outputs, patches, batch_size)
# aggregate outputs
self._aggregate(outputs, locations, batch_size, mergers, ratios)
# finalize the mergers and get the results
merged_outputs = [merger.finalize() for merger in mergers]
# return according to the model output
if self.output_keys:
return dict(zip(self.output_keys, merged_outputs))
if len(merged_outputs) == 1:
return merged_outputs[0]
return merged_outputs
class SimpleInferer(Inferer):
"""
SimpleInferer is the normal inference method that run model forward() directly.
Usage example can be found in the :py:class:`monai.inferers.Inferer` base class.
"""
def __init__(self) -> None:
Inferer.__init__(self)
def __call__(
self, inputs: torch.Tensor, network: Callable[..., torch.Tensor], *args: Any, **kwargs: Any
) -> torch.Tensor:
"""Unified callable function API of Inferers.
Args:
inputs: model input data for inference.
network: target model to execute inference.
supports callables such as ``lambda x: my_torch_model(x, additional_config)``
args: optional args to be passed to ``network``.
kwargs: optional keyword args to be passed to ``network``.
"""
return network(inputs, *args, **kwargs)
class SlidingWindowInferer(Inferer):
"""
Sliding window method for model inference,
with `sw_batch_size` windows for every model.forward().
Usage example can be found in the :py:class:`monai.inferers.Inferer` base class.
Args:
roi_size: the window size to execute SlidingWindow evaluation.
If it has non-positive components, the corresponding `inputs` size will be used.
if the components of the `roi_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
sw_batch_size: the batch size to run window slices.
overlap: Amount of overlap between scans along each spatial dimension, defaults to ``0.25``.
mode: {``"constant"``, ``"gaussian"``}
How to blend output of overlapping windows. Defaults to ``"constant"``.
- ``"constant``": gives equal weight to all predictions.
- ``"gaussian``": gives less weight to predictions on edges of windows.
sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
spatial dimensions.
padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
Padding mode when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
cval: fill value for 'constant' padding mode. Default: 0
sw_device: device for the window data.
By default the device (and accordingly the memory) of the `inputs` is used.
Normally `sw_device` should be consistent with the device where `predictor` is defined.
device: device for the stitched output prediction.
By default the device (and accordingly the memory) of the `inputs` is used. If for example
set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
`inputs` and `roi_size`. Output is on the `device`.
progress: whether to print a tqdm progress bar.
cache_roi_weight_map: whether to precompute the ROI weight map.
cpu_thresh: when provided, dynamically switch to stitching on cpu (to save gpu memory)
when input image volume is larger than this threshold (in pixels/voxels).
Otherwise use ``"device"``. Thus, the output may end-up on either cpu or gpu.
buffer_steps: the number of sliding window iterations along the ``buffer_dim``
to be buffered on ``sw_device`` before writing to ``device``.
(Typically, ``sw_device`` is ``cuda`` and ``device`` is ``cpu``.)
default is None, no buffering. For the buffer dim, when spatial size is divisible by buffer_steps*roi_size,
(i.e. no overlapping among the buffers) non_blocking copy may be automatically enabled for efficiency.
buffer_dim: the spatial dimension along which the buffers are created.
0 indicates the first spatial dimension. Default is -1, the last spatial dimension.
with_coord: whether to pass the window coordinates to ``network``. Defaults to False.
If True, the ``network``'s 2nd input argument should accept the window coordinates.
Note:
``sw_batch_size`` denotes the max number of windows per network inference iteration,
not the batch size of inputs.
"""
def __init__(
self,
roi_size: Sequence[int] | int,
sw_batch_size: int = 1,
overlap: Sequence[float] | float = 0.25,
mode: BlendMode | str = BlendMode.CONSTANT,
sigma_scale: Sequence[float] | float = 0.125,
padding_mode: PytorchPadMode | str = PytorchPadMode.CONSTANT,
cval: float = 0.0,
sw_device: torch.device | str | None = None,
device: torch.device | str | None = None,
progress: bool = False,
cache_roi_weight_map: bool = False,
cpu_thresh: int | None = None,
buffer_steps: int | None = None,
buffer_dim: int = -1,
with_coord: bool = False,
) -> None:
super().__init__()
self.roi_size = roi_size
self.sw_batch_size = sw_batch_size
self.overlap = overlap
self.mode: BlendMode = BlendMode(mode)
self.sigma_scale = sigma_scale
self.padding_mode = padding_mode
self.cval = cval
self.sw_device = sw_device
self.device = device
self.progress = progress
self.cpu_thresh = cpu_thresh
self.buffer_steps = buffer_steps
self.buffer_dim = buffer_dim
self.with_coord = with_coord
# compute_importance_map takes long time when computing on cpu. We thus
# compute it once if it's static and then save it for future usage
self.roi_weight_map = None
try:
if cache_roi_weight_map and isinstance(roi_size, Sequence) and min(roi_size) > 0: # non-dynamic roi size
if device is None:
device = "cpu"
self.roi_weight_map = compute_importance_map(
ensure_tuple(self.roi_size), mode=mode, sigma_scale=sigma_scale, device=device
)
if cache_roi_weight_map and self.roi_weight_map is None:
warnings.warn("cache_roi_weight_map=True, but cache is not created. (dynamic roi_size?)")
except BaseException as e:
raise RuntimeError(
f"roi size {self.roi_size}, mode={mode}, sigma_scale={sigma_scale}, device={device}\n"
"Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
) from e
def __call__(
self,
inputs: torch.Tensor,
network: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
*args: Any,
**kwargs: Any,
) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
"""
Args:
inputs: model input data for inference.
network: target model to execute inference.
supports callables such as ``lambda x: my_torch_model(x, additional_config)``
args: optional args to be passed to ``network``.
kwargs: optional keyword args to be passed to ``network``.
"""
device = kwargs.pop("device", self.device)
buffer_steps = kwargs.pop("buffer_steps", self.buffer_steps)
buffer_dim = kwargs.pop("buffer_dim", self.buffer_dim)
if device is None and self.cpu_thresh is not None and inputs.shape[2:].numel() > self.cpu_thresh:
device = "cpu" # stitch in cpu memory if image is too large
return sliding_window_inference(
inputs,
self.roi_size,
self.sw_batch_size,
network,
self.overlap,
self.mode,
self.sigma_scale,
self.padding_mode,
self.cval,
self.sw_device,
device,
self.progress,
self.roi_weight_map,
None,
buffer_steps,
buffer_dim,
self.with_coord,
*args,
**kwargs,
)
class SlidingWindowInfererAdapt(SlidingWindowInferer):
"""
SlidingWindowInfererAdapt extends SlidingWindowInferer to automatically switch to buffered and then to CPU stitching,
when OOM on GPU. It also records a size of such large images to automatically
try CPU stitching for the next large image of a similar size. If the stitching 'device' input parameter is provided,
automatic adaptation won't be attempted, please keep the default option device = None for adaptive behavior.
Note: the output might be on CPU (even if the input was on GPU), if the GPU memory was not sufficient.
"""
def __call__(
self,
inputs: torch.Tensor,
network: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
*args: Any,
**kwargs: Any,
) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
"""
Args:
inputs: model input data for inference.
network: target model to execute inference.
supports callables such as ``lambda x: my_torch_model(x, additional_config)``
args: optional args to be passed to ``network``.
kwargs: optional keyword args to be passed to ``network``.
"""
# if device is provided, use without any adaptations
if self.device is not None:
return super().__call__(inputs, network, *args, **kwargs)
skip_buffer = self.buffer_steps is not None and self.buffer_steps <= 0
cpu_cond = self.cpu_thresh is not None and inputs.shape[2:].numel() > self.cpu_thresh
gpu_stitching = inputs.is_cuda and not cpu_cond
buffered_stitching = inputs.is_cuda and cpu_cond and not skip_buffer
buffer_steps = max(1, self.buffer_steps) if self.buffer_steps is not None else 1
buffer_dim = -1
sh = list(inputs.shape[2:])
max_dim = sh.index(max(sh))
if inputs.shape[max_dim + 2] / inputs.shape[-1] >= 2:
buffer_dim = max_dim
for _ in range(10): # at most 10 trials
try:
return super().__call__(
inputs,
network,
*args,
device=inputs.device if gpu_stitching else torch.device("cpu"),
buffer_steps=buffer_steps if buffered_stitching else None,
buffer_dim=buffer_dim,
**kwargs,
)
except RuntimeError as e:
if not gpu_stitching and not buffered_stitching or "OutOfMemoryError" not in str(type(e).__name__):
raise e
logger.info(e)
if gpu_stitching: # if failed on gpu
gpu_stitching = False
self.cpu_thresh = inputs.shape[2:].numel() - 1 # update thresh
if skip_buffer:
buffered_stitching = False
logger.warning(f"GPU stitching failed, attempting on CPU, image dim {inputs.shape}.")
else:
buffered_stitching = True
self.buffer_steps = buffer_steps
logger.warning(
f"GPU stitching failed, buffer {buffer_steps} dim {buffer_dim}, image dim {inputs.shape}."
)
elif buffer_steps > 1:
buffer_steps = max(1, buffer_steps // 2)
self.buffer_steps = buffer_steps
logger.warning(
f"GPU buffered stitching failed, image dim {inputs.shape} reducing buffer to {buffer_steps}."
)
else:
buffered_stitching = False
logger.warning(f"GPU buffered stitching failed, attempting on CPU, image dim {inputs.shape}.")
raise RuntimeError( # not possible to finish after the trials
f"SlidingWindowInfererAdapt {skip_buffer} {cpu_cond} {gpu_stitching} {buffered_stitching} {buffer_steps}"
)
class SaliencyInferer(Inferer):
"""
SaliencyInferer is inference with activation maps.
Args:
cam_name: expected CAM method name, should be: "CAM", "GradCAM" or "GradCAMpp".
target_layers: name of the model layer to generate the feature map.
class_idx: index of the class to be visualized. if None, default to argmax(logits).
args: other optional args to be passed to the `__init__` of cam.
kwargs: other optional keyword args to be passed to `__init__` of cam.
"""
def __init__(
self, cam_name: str, target_layers: str, class_idx: int | None = None, *args: Any, **kwargs: Any
) -> None:
Inferer.__init__(self)
if cam_name.lower() not in ("cam", "gradcam", "gradcampp"):
raise ValueError("cam_name should be: 'CAM', 'GradCAM' or 'GradCAMpp'.")
self.cam_name = cam_name.lower()
self.target_layers = target_layers
self.class_idx = class_idx
self.args = args
self.kwargs = kwargs
def __call__(self, inputs: torch.Tensor, network: nn.Module, *args: Any, **kwargs: Any): # type: ignore
"""Unified callable function API of Inferers.
Args:
inputs: model input data for inference.
network: target model to execute inference.
supports callables such as ``lambda x: my_torch_model(x, additional_config)``
args: other optional args to be passed to the `__call__` of cam.
kwargs: other optional keyword args to be passed to `__call__` of cam.
"""
cam: CAM | GradCAM | GradCAMpp
if self.cam_name == "cam":
cam = CAM(network, self.target_layers, *self.args, **self.kwargs)
elif self.cam_name == "gradcam":
cam = GradCAM(network, self.target_layers, *self.args, **self.kwargs)
else:
cam = GradCAMpp(network, self.target_layers, *self.args, **self.kwargs)
return cam(inputs, self.class_idx, *args, **kwargs)
class SliceInferer(SlidingWindowInferer):
"""
SliceInferer extends SlidingWindowInferer to provide slice-by-slice (2D) inference when provided a 3D volume.
A typical use case could be a 2D model (like 2D segmentation UNet) operates on the slices from a 3D volume,
and the output is a 3D volume with 2D slices aggregated. Example::
# sliding over the `spatial_dim`
inferer = SliceInferer(roi_size=(64, 256), sw_batch_size=1, spatial_dim=1)
output = inferer(input_volume, net)
Args:
spatial_dim: Spatial dimension over which the slice-by-slice inference runs on the 3D volume.
For example ``0`` could slide over axial slices. ``1`` over coronal slices and ``2`` over sagittal slices.
args: other optional args to be passed to the `__init__` of base class SlidingWindowInferer.
kwargs: other optional keyword args to be passed to `__init__` of base class SlidingWindowInferer.
Note:
``roi_size`` in SliceInferer is expected to be a 2D tuple when a 3D volume is provided. This allows
sliding across slices along the 3D volume using a selected ``spatial_dim``.
"""
def __init__(self, spatial_dim: int = 0, *args: Any, **kwargs: Any) -> None:
self.spatial_dim = spatial_dim
super().__init__(*args, **kwargs)
self.orig_roi_size = ensure_tuple(self.roi_size)
def __call__(
self,
inputs: torch.Tensor,
network: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
*args: Any,
**kwargs: Any,
) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
"""
Args:
inputs: 3D input for inference
network: 2D model to execute inference on slices in the 3D input
args: optional args to be passed to ``network``.
kwargs: optional keyword args to be passed to ``network``.
"""
if self.spatial_dim > 2:
raise ValueError("`spatial_dim` can only be `0, 1, 2` with `[H, W, D]` respectively.")
# Check if ``roi_size`` tuple is 2D and ``inputs`` tensor is 3D
self.roi_size = ensure_tuple(self.roi_size)
if len(self.orig_roi_size) == 2 and len(inputs.shape[2:]) == 3:
self.roi_size = list(self.orig_roi_size)
self.roi_size.insert(self.spatial_dim, 1)
else:
raise RuntimeError(
f"Currently, only 2D `roi_size` ({self.orig_roi_size}) with 3D `inputs` tensor (shape={inputs.shape}) is supported."
)
return super().__call__(inputs=inputs, network=lambda x: self.network_wrapper(network, x, *args, **kwargs))
def network_wrapper(
self,
network: Callable[..., torch.Tensor | Sequence[torch.Tensor] | dict[Any, torch.Tensor]],
x: torch.Tensor,
*args: Any,
**kwargs: Any,
) -> torch.Tensor | tuple[torch.Tensor, ...] | dict[Any, torch.Tensor]:
"""
Wrapper handles inference for 2D models over 3D volume inputs.
"""
# Pass 4D input [N, C, H, W]/[N, C, D, W]/[N, C, D, H] to the model as it is 2D.
x = x.squeeze(dim=self.spatial_dim + 2)
out = network(x, *args, **kwargs)
# Unsqueeze the network output so it is [N, C, D, H, W] as expected by
# the default SlidingWindowInferer class
if isinstance(out, torch.Tensor):
return out.unsqueeze(dim=self.spatial_dim + 2)
if isinstance(out, Mapping):
for k in out.keys():
out[k] = out[k].unsqueeze(dim=self.spatial_dim + 2)
return out
return tuple(out_i.unsqueeze(dim=self.spatial_dim + 2) for out_i in out)
class DiffusionInferer(Inferer):
"""
DiffusionInferer takes a trained diffusion model and a scheduler and can be used to perform a signal forward pass
for a training iteration, and sample from the model.
Args:
scheduler: diffusion scheduler.
"""
def __init__(self, scheduler: Scheduler) -> None: # type: ignore[override]
super().__init__()
self.scheduler = scheduler
def __call__( # type: ignore[override]
self,
inputs: torch.Tensor,
diffusion_model: DiffusionModelUNet,
noise: torch.Tensor,
timesteps: torch.Tensor,
condition: torch.Tensor | None = None,
mode: str = "crossattn",
seg: torch.Tensor | None = None,
) -> torch.Tensor:
"""
Implements the forward pass for a supervised training iteration.
Args:
inputs: Input image to which noise is added.
diffusion_model: diffusion model.
noise: random noise, of the same shape as the input.
timesteps: random timesteps.
condition: Conditioning for network input.
mode: Conditioning mode for the network.
seg: if model is instance of SPADEDiffusionModelUnet, segmentation must be
provided on the forward (for SPADE-like AE or SPADE-like DM)
"""
if mode not in ["crossattn", "concat"]:
raise NotImplementedError(f"{mode} condition is not supported")
noisy_image: torch.Tensor = self.scheduler.add_noise(original_samples=inputs, noise=noise, timesteps=timesteps)
if mode == "concat":
if condition is None:
raise ValueError("Conditioning is required for concat condition")
else:
noisy_image = torch.cat([noisy_image, condition], dim=1)
condition = None
diffusion_model = (
partial(diffusion_model, seg=seg)
if isinstance(diffusion_model, SPADEDiffusionModelUNet)
else diffusion_model
)
prediction: torch.Tensor = diffusion_model(x=noisy_image, timesteps=timesteps, context=condition)
return prediction
@torch.no_grad()
def sample(
self,
input_noise: torch.Tensor,
diffusion_model: DiffusionModelUNet,
scheduler: Scheduler | None = None,
save_intermediates: bool | None = False,
intermediate_steps: int | None = 100,
conditioning: torch.Tensor | None = None,
mode: str = "crossattn",
verbose: bool = True,
seg: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, list[torch.Tensor]]:
"""
Args:
input_noise: random noise, of the same shape as the desired sample.
diffusion_model: model to sample from.
scheduler: diffusion scheduler. If none provided will use the class attribute scheduler
save_intermediates: whether to return intermediates along the sampling change
intermediate_steps: if save_intermediates is True, saves every n steps
conditioning: Conditioning for network input.
mode: Conditioning mode for the network.
verbose: if true, prints the progression bar of the sampling process.
seg: if diffusion model is instance of SPADEDiffusionModel, segmentation must be provided.
"""
if mode not in ["crossattn", "concat"]:
raise NotImplementedError(f"{mode} condition is not supported")
if mode == "concat" and conditioning is None:
raise ValueError("Conditioning must be supplied for if condition mode is concat.")
if not scheduler:
scheduler = self.scheduler
image = input_noise
if verbose and has_tqdm:
progress_bar = tqdm(scheduler.timesteps)
else:
progress_bar = iter(scheduler.timesteps)
intermediates = []
for t in progress_bar:
# 1. predict noise model_output
diffusion_model = (
partial(diffusion_model, seg=seg)
if isinstance(diffusion_model, SPADEDiffusionModelUNet)
else diffusion_model
)
if mode == "concat" and conditioning is not None:
model_input = torch.cat([image, conditioning], dim=1)
model_output = diffusion_model(
model_input, timesteps=torch.Tensor((t,)).to(input_noise.device), context=None
)
else:
model_output = diffusion_model(
image, timesteps=torch.Tensor((t,)).to(input_noise.device), context=conditioning
)
# 2. compute previous image: x_t -> x_t-1
image, _ = scheduler.step(model_output, t, image)
if save_intermediates and t % intermediate_steps == 0:
intermediates.append(image)
if save_intermediates:
return image, intermediates
else:
return image
@torch.no_grad()
def get_likelihood(
self,
inputs: torch.Tensor,
diffusion_model: DiffusionModelUNet,
scheduler: Scheduler | None = None,
save_intermediates: bool | None = False,
conditioning: torch.Tensor | None = None,
mode: str = "crossattn",
original_input_range: tuple = (0, 255),
scaled_input_range: tuple = (0, 1),
verbose: bool = True,
seg: torch.Tensor | None = None,
) -> torch.Tensor | tuple[torch.Tensor, list[torch.Tensor]]:
"""
Computes the log-likelihoods for an input.
Args:
inputs: input images, NxCxHxW[xD]
diffusion_model: model to compute likelihood from
scheduler: diffusion scheduler. If none provided will use the class attribute scheduler.
save_intermediates: save the intermediate spatial KL maps
conditioning: Conditioning for network input.
mode: Conditioning mode for the network.
original_input_range: the [min,max] intensity range of the input data before any scaling was applied.
scaled_input_range: the [min,max] intensity range of the input data after scaling.
verbose: if true, prints the progression bar of the sampling process.
seg: if diffusion model is instance of SPADEDiffusionModel, segmentation must be provided.
"""
if not scheduler:
scheduler = self.scheduler
if scheduler._get_name() != "DDPMScheduler":
raise NotImplementedError(
f"Likelihood computation is only compatible with DDPMScheduler,"
f" you are using {scheduler._get_name()}"
)
if mode not in ["crossattn", "concat"]:
raise NotImplementedError(f"{mode} condition is not supported")
if mode == "concat" and conditioning is None:
raise ValueError("Conditioning must be supplied for if condition mode is concat.")
if verbose and has_tqdm:
progress_bar = tqdm(scheduler.timesteps)
else:
progress_bar = iter(scheduler.timesteps)
intermediates = []
noise = torch.randn_like(inputs).to(inputs.device)
total_kl = torch.zeros(inputs.shape[0]).to(inputs.device)
for t in progress_bar:
timesteps = torch.full(inputs.shape[:1], t, device=inputs.device).long()
noisy_image = self.scheduler.add_noise(original_samples=inputs, noise=noise, timesteps=timesteps)
diffusion_model = (
partial(diffusion_model, seg=seg)
if isinstance(diffusion_model, SPADEDiffusionModelUNet)
else diffusion_model
)
if mode == "concat" and conditioning is not None:
noisy_image = torch.cat([noisy_image, conditioning], dim=1)
model_output = diffusion_model(noisy_image, timesteps=timesteps, context=None)
else:
model_output = diffusion_model(x=noisy_image, timesteps=timesteps, context=conditioning)
# get the model's predicted mean, and variance if it is predicted
if model_output.shape[1] == inputs.shape[1] * 2 and scheduler.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(model_output, inputs.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = scheduler.alphas_cumprod[t]
alpha_prod_t_prev = scheduler.alphas_cumprod[t - 1] if t > 0 else scheduler.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if scheduler.prediction_type == "epsilon":
pred_original_sample = (noisy_image - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif scheduler.prediction_type == "sample":
pred_original_sample = model_output
elif scheduler.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * noisy_image - (beta_prod_t**0.5) * model_output
# 3. Clip "predicted x_0"
if scheduler.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * scheduler.betas[t]) / beta_prod_t
current_sample_coeff = scheduler.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
predicted_mean = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * noisy_image
# get the posterior mean and variance
posterior_mean = scheduler._get_mean(timestep=t, x_0=inputs, x_t=noisy_image)
posterior_variance = scheduler._get_variance(timestep=t, predicted_variance=predicted_variance)
log_posterior_variance = torch.log(posterior_variance)
log_predicted_variance = torch.log(predicted_variance) if predicted_variance else log_posterior_variance
if t == 0:
# compute -log p(x_0|x_1)
kl = -self._get_decoder_log_likelihood(
inputs=inputs,
means=predicted_mean,
log_scales=0.5 * log_predicted_variance,