-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathtest_mednext.py
126 lines (106 loc) · 4.77 KB
/
test_mednext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
import torch
from parameterized import parameterized
from monai.networks import eval_mode
from monai.networks.nets import MedNeXt, MedNeXtL, MedNeXtM, MedNeXtS
device = "cuda" if torch.cuda.is_available() else "cpu"
TEST_CASE_MEDNEXT = []
for spatial_dims in range(2, 4):
for init_filters in [8, 16]:
for deep_supervision in [False, True]:
for do_res in [False, True]:
test_case = [
{
"spatial_dims": spatial_dims,
"init_filters": init_filters,
"deep_supervision": deep_supervision,
"use_residual_connection": do_res,
},
(2, 1, *([16] * spatial_dims)),
(2, 2, *([16] * spatial_dims)),
]
TEST_CASE_MEDNEXT.append(test_case)
TEST_CASE_MEDNEXT_2 = []
for spatial_dims in range(2, 4):
for out_channels in [1, 2]:
for deep_supervision in [False, True]:
test_case = [
{
"spatial_dims": spatial_dims,
"init_filters": 8,
"out_channels": out_channels,
"deep_supervision": deep_supervision,
},
(2, 1, *([16] * spatial_dims)),
(2, out_channels, *([16] * spatial_dims)),
]
TEST_CASE_MEDNEXT_2.append(test_case)
TEST_CASE_MEDNEXT_VARIANTS = []
for model in [MedNeXtS, MedNeXtM, MedNeXtL]:
for spatial_dims in range(2, 4):
for out_channels in [1, 2]:
test_case = [
model, # type: ignore
{"spatial_dims": spatial_dims, "in_channels": 1, "out_channels": out_channels},
(2, 1, *([16] * spatial_dims)),
(2, out_channels, *([16] * spatial_dims)),
]
TEST_CASE_MEDNEXT_VARIANTS.append(test_case)
class TestMedNeXt(unittest.TestCase):
@parameterized.expand(TEST_CASE_MEDNEXT)
def test_shape(self, input_param, input_shape, expected_shape):
net = MedNeXt(**input_param).to(device)
with eval_mode(net):
result = net(torch.randn(input_shape).to(device))
if input_param["deep_supervision"] and net.training:
assert isinstance(result, torch.Tensor)
result = torch.unbind(result, dim=1)
for r in result:
self.assertEqual(r.shape, expected_shape, msg=str(input_param))
else:
self.assertEqual(result.shape, expected_shape, msg=str(input_param))
@parameterized.expand(TEST_CASE_MEDNEXT_2)
def test_shape2(self, input_param, input_shape, expected_shape):
net = MedNeXt(**input_param).to(device)
net.train()
result = net(torch.randn(input_shape).to(device))
if input_param["deep_supervision"]:
assert isinstance(result, torch.Tensor)
result = torch.unbind(result, dim=1)
for r in result:
self.assertEqual(r.shape, expected_shape, msg=str(input_param))
else:
assert isinstance(result, torch.Tensor)
self.assertEqual(result.shape, expected_shape, msg=str(input_param))
net.eval()
result = net(torch.randn(input_shape).to(device))
assert isinstance(result, torch.Tensor)
self.assertEqual(result.shape, expected_shape, msg=str(input_param))
def test_ill_arg(self):
with self.assertRaises(AssertionError):
MedNeXt(spatial_dims=4)
@parameterized.expand(TEST_CASE_MEDNEXT_VARIANTS)
def test_mednext_variants(self, model, input_param, input_shape, expected_shape):
net = model(**input_param).to(device)
net.train()
result = net(torch.randn(input_shape).to(device))
assert isinstance(result, torch.Tensor)
self.assertEqual(result.shape, expected_shape, msg=str(input_param))
net.eval()
with torch.no_grad():
result = net(torch.randn(input_shape).to(device))
assert isinstance(result, torch.Tensor)
self.assertEqual(result.shape, expected_shape, msg=str(input_param))
if __name__ == "__main__":
unittest.main()