-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtest_converters.py
244 lines (177 loc) · 6.86 KB
/
test_converters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import numpy as np
import pytest
import sys
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import tests.base.develop_utils as tutils
from pytorch_lightning.metrics.converters import (
_apply_to_inputs,
_apply_to_outputs,
_convert_to_tensor,
_convert_to_numpy,
_numpy_metric_conversion,
_tensor_metric_conversion,
_sync_ddp_if_available,
tensor_metric,
numpy_metric
)
def test_apply_to_inputs():
def apply_fn(inputs, factor):
if isinstance(inputs, (float, int)):
return inputs * factor
elif isinstance(inputs, dict):
return {k: apply_fn(v, factor) for k, v in inputs.items()}
elif isinstance(inputs, (tuple, list)):
return [apply_fn(x, factor) for x in inputs]
@_apply_to_inputs(apply_fn, factor=2.)
def test_fn(*args, **kwargs):
return args, kwargs
for args in [[], [1., 2.]]:
for kwargs in [{}, {'a': 1., 'b': 2.}]:
result_args, result_kwargs = test_fn(*args, **kwargs)
assert isinstance(result_args, (list, tuple))
assert isinstance(result_kwargs, dict)
assert len(result_args) == len(args)
assert len(result_kwargs) == len(kwargs)
assert all([k in result_kwargs for k in kwargs.keys()])
for arg, result_arg in zip(args, result_args):
assert arg * 2. == result_arg
for key in kwargs.keys():
arg = kwargs[key]
result_arg = result_kwargs[key]
assert arg * 2. == result_arg
def test_apply_to_outputs():
def apply_fn(inputs, additional_str):
return str(inputs) + additional_str
@_apply_to_outputs(apply_fn, additional_str='_str')
def test_fn(*args, **kwargs):
return 'dummy'
assert test_fn() == 'dummy_str'
def test_convert_to_tensor():
for test_item in [1., np.array([1.])]:
result_tensor = _convert_to_tensor(test_item)
assert isinstance(result_tensor, torch.Tensor)
assert result_tensor.item() == 1.
def test_convert_to_numpy():
for test_item in [1., torch.tensor([1.])]:
result = _convert_to_numpy(test_item)
assert isinstance(result, np.ndarray)
assert result.item() == 1.
def test_numpy_metric_conversion():
@_numpy_metric_conversion
def numpy_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, np.ndarray)
for v in kwargs.values():
assert isinstance(v, np.ndarray)
return 5.
result = numpy_test_metric(torch.tensor([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5.
def test_tensor_metric_conversion():
@_tensor_metric_conversion
def tensor_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, torch.Tensor)
for v in kwargs.values():
assert isinstance(v, torch.Tensor)
return 5.
result = tensor_test_metric(np.array([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5.
def _setup_ddp(rank, worldsize):
import os
os.environ['MASTER_ADDR'] = 'localhost'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=worldsize)
def _ddp_test_fn(rank, worldsize, add_offset: bool, reduction_mean=False):
_setup_ddp(rank, worldsize)
if add_offset:
tensor = torch.tensor([float(rank)])
else:
tensor = torch.tensor([1.], )
if reduction_mean:
reduced_tensor = _sync_ddp_if_available(tensor, reduce_op='avg')
manual_reduction = sum([i for i in range(dist.get_world_size())]) / dist.get_world_size()
print(reduced_tensor)
print(manual_reduction)
assert reduced_tensor.item() == manual_reduction
else:
reduced_tensor = _sync_ddp_if_available(tensor)
assert reduced_tensor.item() == dist.get_world_size(), \
'Sync-Reduce does not work properly with DDP and Tensors'
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_sync_reduce_ddp():
"""Make sure sync-reduce works with DDP"""
tutils.reset_seed()
tutils.set_random_master_port()
worldsize = 2
mp.spawn(_ddp_test_fn, args=(worldsize, False), nprocs=worldsize)
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_sync_reduce_ddp_mean():
"""Make sure sync-reduce works with DDP"""
tutils.reset_seed()
tutils.set_random_master_port()
worldsize = 2
mp.spawn(_ddp_test_fn, args=(worldsize, True, True), nprocs=worldsize)
def test_sync_reduce_simple():
"""Make sure sync-reduce works without DDP"""
tensor = torch.tensor([1.], device='cpu')
reduced_tensor = _sync_ddp_if_available(tensor)
assert torch.allclose(tensor, reduced_tensor), \
'Sync-Reduce does not work properly without DDP and Tensors'
def _test_tensor_metric(is_ddp: bool):
@tensor_metric()
def tensor_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, torch.Tensor)
for v in kwargs.values():
assert isinstance(v, torch.Tensor)
return 5.
if is_ddp:
factor = dist.get_world_size()
else:
factor = 1.
result = tensor_test_metric(np.array([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5. * factor
def _ddp_test_tensor_metric(rank, worldsize):
_setup_ddp(rank, worldsize)
_test_tensor_metric(True)
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_tensor_metric_ddp():
tutils.reset_seed()
tutils.set_random_master_port()
world_size = 2
mp.spawn(_ddp_test_tensor_metric, args=(world_size,), nprocs=world_size)
# dist.destroy_process_group()
def test_tensor_metric_simple():
_test_tensor_metric(False)
def _test_numpy_metric(is_ddp: bool):
@numpy_metric()
def numpy_test_metric(*args, **kwargs):
for arg in args:
assert isinstance(arg, np.ndarray)
for v in kwargs.values():
assert isinstance(v, np.ndarray)
return 5.
if is_ddp:
factor = dist.get_world_size()
else:
factor = 1.
result = numpy_test_metric(torch.tensor([1.]), dummy_kwarg=2.)
assert isinstance(result, torch.Tensor)
assert result.item() == 5. * factor
def _ddp_test_numpy_metric(rank, worldsize):
_setup_ddp(rank, worldsize)
_test_numpy_metric(True)
@pytest.mark.skipif(sys.platform == "win32" , reason="DDP not available on windows")
def test_numpy_metric_ddp():
tutils.reset_seed()
tutils.set_random_master_port()
world_size = 2
mp.spawn(_ddp_test_numpy_metric, args=(world_size,), nprocs=world_size)
# dist.destroy_process_group()
def test_numpy_metric_simple():
_test_numpy_metric(False)