-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtest_dataloaders.py
856 lines (675 loc) · 30.7 KB
/
test_dataloaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
import os
import platform
from unittest.mock import patch
import pytest
import torch
from packaging.version import parse
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import IterableDataset, Subset
from torch.utils.data.distributed import DistributedSampler
import tests.base.develop_pipelines as tpipes
from pytorch_lightning import Trainer, Callback
from pytorch_lightning.trainer.data_loading import _has_iterable_dataset, _has_len
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
def test_fit_train_loader_only(tmpdir):
model = EvalModelTemplate()
train_dataloader = model.train_dataloader()
model.train_dataloader = None
model.val_dataloader = None
model.test_dataloader = None
model.validation_step = None
model.validation_epoch_end = None
model.test_step = None
model.test_epoch_end = None
trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir)
trainer.fit(model, train_dataloader=train_dataloader)
def test_fit_val_loader_only(tmpdir):
model = EvalModelTemplate()
train_dataloader = model.train_dataloader()
val_dataloader = model.val_dataloader()
model.train_dataloader = None
model.val_dataloader = None
model.test_dataloader = None
model.test_step = None
model.test_epoch_end = None
trainer = Trainer(fast_dev_run=True, default_root_dir=tmpdir)
trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader)
@pytest.mark.parametrize("dataloader_options", [
dict(val_check_interval=10000),
])
def test_dataloader_config_errors_runtime(tmpdir, dataloader_options):
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
**dataloader_options,
)
with pytest.raises(ValueError):
# fit model
trainer.fit(model)
@pytest.mark.parametrize("dataloader_options", [
dict(limit_train_batches=-0.1),
dict(limit_train_batches=1.2),
dict(limit_val_batches=-0.1),
dict(limit_val_batches=1.2),
dict(limit_test_batches=-0.1),
dict(limit_test_batches=1.2),
dict(val_check_interval=-0.1),
dict(val_check_interval=1.2),
dict(overfit_batches=-0.1),
dict(overfit_batches=1.2),
])
def test_dataloader_config_errors_init(tmpdir, dataloader_options):
with pytest.raises(MisconfigurationException, match='passed invalid value'):
Trainer(
default_root_dir=tmpdir,
max_epochs=1,
**dataloader_options,
)
def test_multiple_val_dataloader(tmpdir):
"""Verify multiple val_dataloader."""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=1.0,
)
result = trainer.fit(model)
# verify training completed
assert result == 1
# verify there are 2 val loaders
assert len(trainer.val_dataloaders) == 2, \
'Multiple val_dataloaders not initiated properly'
# make sure predictions are good for each val set
for dataloader in trainer.val_dataloaders:
tpipes.run_prediction(dataloader, trainer.model)
@pytest.mark.parametrize('ckpt_path', [None, 'best', 'specific'])
def test_multiple_test_dataloader(tmpdir, ckpt_path):
"""Verify multiple test_dataloader."""
model_template = EvalModelTemplate()
class MultipleTestDataloaderModel(EvalModelTemplate):
def test_dataloader(self):
return model_template.test_dataloader__multiple()
def test_step(self, batch, batch_idx, *args, **kwargs):
return model_template.test_step__multiple_dataloaders(batch, batch_idx, *args, **kwargs)
model = MultipleTestDataloaderModel()
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
trainer.fit(model)
if ckpt_path == 'specific':
ckpt_path = trainer.checkpoint_callback.best_model_path
trainer.test(ckpt_path=ckpt_path)
# verify there are 2 test loaders
assert len(trainer.test_dataloaders) == 2, \
'Multiple test_dataloaders not initiated properly'
# make sure predictions are good for each test set
for dataloader in trainer.test_dataloaders:
tpipes.run_prediction(dataloader, trainer.model)
# run the test method
trainer.test(ckpt_path=ckpt_path)
def test_train_dataloader_passed_to_fit(tmpdir):
"""Verify that train dataloader can be passed to fit """
# only train passed to fit
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
fit_options = dict(train_dataloader=model.dataloader(train=True))
result = trainer.fit(model, **fit_options)
assert result == 1
def test_train_val_dataloaders_passed_to_fit(tmpdir):
""" Verify that train & val dataloader can be passed to fit """
# train, val passed to fit
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
fit_options = dict(train_dataloader=model.dataloader(train=True),
val_dataloaders=model.dataloader(train=False))
result = trainer.fit(model, **fit_options)
assert result == 1
assert len(trainer.val_dataloaders) == 1, \
f'`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
@pytest.mark.parametrize('ckpt_path', [None, 'best', 'specific'])
def test_all_dataloaders_passed_to_fit(tmpdir, ckpt_path):
"""Verify train, val & test dataloader(s) can be passed to fit and test method"""
model = EvalModelTemplate()
# train, val and test passed to fit
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
fit_options = dict(train_dataloader=model.dataloader(train=True),
val_dataloaders=model.dataloader(train=False))
result = trainer.fit(model, **fit_options)
if ckpt_path == 'specific':
ckpt_path = trainer.checkpoint_callback.best_model_path
test_options = dict(test_dataloaders=model.dataloader(train=False),
ckpt_path=ckpt_path)
trainer.test(**test_options)
assert result == 1
assert len(trainer.val_dataloaders) == 1, \
f'val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
assert len(trainer.test_dataloaders) == 1, \
f'test_dataloaders` not initiated properly, got {trainer.test_dataloaders}'
@pytest.mark.parametrize('ckpt_path', [None, 'best', 'specific'])
def test_multiple_dataloaders_passed_to_fit(tmpdir, ckpt_path):
"""Verify that multiple val & test dataloaders can be passed to fit."""
model = EvalModelTemplate()
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
# train, multiple val and multiple test passed to fit
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
fit_options = dict(train_dataloader=model.dataloader(train=True),
val_dataloaders=[model.dataloader(train=False),
model.dataloader(train=False)])
trainer.fit(model, **fit_options)
if ckpt_path == 'specific':
ckpt_path = trainer.checkpoint_callback.best_model_path
test_options = dict(test_dataloaders=[model.dataloader(train=False),
model.dataloader(train=False)],
ckpt_path=ckpt_path)
trainer.test(**test_options)
assert len(trainer.val_dataloaders) == 2, \
f'Multiple `val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
assert len(trainer.test_dataloaders) == 2, \
f'Multiple `test_dataloaders` not initiated properly, got {trainer.test_dataloaders}'
@pytest.mark.parametrize(['limit_train_batches', 'limit_val_batches', 'limit_test_batches'], [
pytest.param(0.0, 0.0, 0.0),
pytest.param(1.0, 1.0, 1.0),
])
def test_inf_dataloaders_with_limit_percent_batches(tmpdir, limit_train_batches, limit_val_batches, limit_test_batches):
"""Verify inf train, val & test dataloaders (e.g. IterableDataset) passed with batch limit in percent"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__infinite
model.val_dataloader = model.val_dataloader__infinite
model.test_dataloader = model.test_dataloader__infinite
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
results = trainer.fit(model)
assert results == 1
assert trainer.num_training_batches == (0 if limit_train_batches == 0.0 else float('inf'))
assert trainer.num_val_batches[0] == (0 if limit_val_batches == 0.0 else float('inf'))
trainer.test(ckpt_path=None)
assert trainer.num_test_batches[0] == (0 if limit_test_batches == 0.0 else float('inf'))
@pytest.mark.parametrize(['limit_train_batches', 'limit_val_batches', 'limit_test_batches'], [
pytest.param(0, 0, 0),
pytest.param(10, 10, 10),
])
def test_inf_dataloaders_with_limit_num_batches(tmpdir, limit_train_batches, limit_val_batches, limit_test_batches):
"""Verify inf train, val & test dataloaders (e.g. IterableDataset) passed with batch limit as number"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__infinite
model.val_dataloader = model.val_dataloader__infinite
model.test_dataloader = model.test_dataloader__infinite
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
results = trainer.fit(model)
assert results
assert trainer.num_training_batches == limit_train_batches
assert trainer.num_val_batches[0] == limit_val_batches
trainer.test(ckpt_path=None)
assert trainer.num_test_batches[0] == limit_test_batches
@pytest.mark.parametrize(
['limit_train_batches', 'limit_val_batches', 'limit_test_batches'],
[
pytest.param(0.0, 0.0, 0.0),
pytest.param(0, 0, 0.5),
pytest.param(1.0, 1.0, 1.0),
pytest.param(0.2, 0.4, 0.4),
]
)
def test_dataloaders_with_limit_percent_batches(tmpdir, limit_train_batches, limit_val_batches, limit_test_batches):
"""Verify num_batches for train, val & test dataloaders passed with batch limit in percent"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple_mixed_length
model.test_dataloader = model.test_dataloader__multiple_mixed_length
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
model.test_epoch_end = model.test_epoch_end__multiple_dataloaders
# train, multiple val and multiple test passed with percent_check
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
trainer.fit(model)
expected_train_batches = int(len(trainer.train_dataloader) * limit_train_batches)
expected_val_batches = [
int(len(dataloader) * limit_val_batches) for dataloader in trainer.val_dataloaders
]
assert trainer.num_training_batches == expected_train_batches
assert trainer.num_val_batches == expected_val_batches
trainer.test(ckpt_path=None)
expected_test_batches = [
int(len(dataloader) * limit_test_batches) for dataloader in trainer.test_dataloaders
]
assert trainer.num_test_batches == expected_test_batches
@pytest.mark.parametrize(
['limit_train_batches', 'limit_val_batches', 'limit_test_batches'],
[
pytest.param(0, 0, 0),
pytest.param(1, 2, 3),
pytest.param(1, 2, 1e50),
]
)
def test_dataloaders_with_limit_num_batches(tmpdir, limit_train_batches, limit_val_batches, limit_test_batches):
"""Verify num_batches for train, val & test dataloaders passed with batch limit as number"""
os.environ['PL_DEV_DEBUG'] = '1'
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple_mixed_length
model.test_dataloader = model.test_dataloader__multiple_mixed_length
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
model.test_epoch_end = model.test_epoch_end__multiple_dataloaders
# train, multiple val and multiple test passed with percent_check
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=limit_train_batches,
limit_val_batches=limit_val_batches,
limit_test_batches=limit_test_batches,
)
trainer.fit(model)
# -------------------------------------------
# MAKE SURE THE TRAINER SET THE CORRECT VALUES
# -------------------------------------------
assert trainer.num_training_batches == limit_train_batches
assert trainer.num_val_batches == [limit_val_batches] * len(trainer.val_dataloaders)
trainer.test(ckpt_path=None)
# when the limit is greater than the number of test batches it should be the num in loaders
test_dataloader_lengths = [len(x) for x in model.test_dataloader()]
if limit_test_batches > 1e10:
assert trainer.num_test_batches == test_dataloader_lengths
else:
assert trainer.num_test_batches == [limit_test_batches] * len(trainer.test_dataloaders)
# -------------------------------------------
# make sure we actually saw the expected num of batches
# -------------------------------------------
num_val_dataloaders = len(model.val_dataloader())
num_test_dataloaders = len(model.test_dataloader())
if limit_train_batches > 0:
# make sure val batches are as expected
assert len(trainer.dev_debugger.num_seen_val_check_batches) == num_val_dataloaders
for dataloader_idx, num_batches in trainer.dev_debugger.num_seen_val_check_batches.items():
assert num_batches == limit_val_batches
# make sure test batches are as expected
assert len(trainer.dev_debugger.num_seen_test_check_batches) == num_test_dataloaders
for dataloader_idx, num_batches in trainer.dev_debugger.num_seen_test_check_batches.items():
if limit_test_batches > 1e10:
assert num_batches == test_dataloader_lengths[dataloader_idx]
else:
assert num_batches == limit_test_batches
def test_dataloaders_with_fast_dev_run(tmpdir):
"""Verify num_batches for train, val & test dataloaders passed with fast_dev_run = True"""
os.environ['PL_DEV_DEBUG'] = '1'
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple_mixed_length
model.test_dataloader = model.test_dataloader__multiple_mixed_length
model.validation_step = model.validation_step__multiple_dataloaders
model.validation_epoch_end = model.validation_epoch_end__multiple_dataloaders
model.test_step = model.test_step__multiple_dataloaders
model.test_epoch_end = model.test_epoch_end__multiple_dataloaders
# train, multiple val and multiple test dataloaders passed with fast_dev_run = True
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
fast_dev_run=True,
)
assert trainer.max_epochs == 1
assert trainer.num_sanity_val_steps == 0
trainer.fit(model)
assert not trainer.disable_validation
assert trainer.num_training_batches == 1
assert trainer.num_val_batches == [1] * len(trainer.val_dataloaders)
trainer.test(ckpt_path=None)
assert trainer.num_test_batches == [1] * len(trainer.test_dataloaders)
# verify sanity check batches match as expected
num_val_dataloaders = len(model.val_dataloader())
assert trainer.dev_debugger.num_seen_sanity_check_batches == trainer.num_sanity_val_steps * num_val_dataloaders
@pytest.mark.parametrize('ckpt_path', [None, 'best', 'specific'])
def test_mixing_of_dataloader_options(tmpdir, ckpt_path):
"""Verify that dataloaders can be passed to fit"""
model = EvalModelTemplate()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
# fit model
trainer = Trainer(**trainer_options)
results = trainer.fit(model, val_dataloaders=model.dataloader(train=False))
assert results
# fit model
trainer = Trainer(**trainer_options)
results = trainer.fit(model, val_dataloaders=model.dataloader(train=False))
assert results
if ckpt_path == 'specific':
ckpt_path = trainer.checkpoint_callback.best_model_path
trainer.test(test_dataloaders=model.dataloader(train=False), ckpt_path=ckpt_path)
assert len(trainer.val_dataloaders) == 1, \
f'`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
assert len(trainer.test_dataloaders) == 1, \
f'`test_dataloaders` not initiated properly, got {trainer.test_dataloaders}'
def test_train_inf_dataloader_error(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__infinite
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=0.5)
with pytest.raises(MisconfigurationException, match='using an IterableDataset'):
trainer.fit(model)
def test_val_inf_dataloader_error(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__infinite
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.5)
with pytest.raises(MisconfigurationException, match='using an IterableDataset'):
trainer.fit(model)
def test_test_inf_dataloader_error(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.test_dataloader = model.test_dataloader__infinite
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_test_batches=0.5)
with pytest.raises(MisconfigurationException, match='using an IterableDataset'):
trainer.test(model)
@pytest.mark.parametrize('check_interval', [50, 1.0])
def test_inf_train_dataloader(tmpdir, check_interval):
"""Test inf train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__infinite
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
val_check_interval=check_interval,
)
result = trainer.fit(model)
# verify training completed
assert result == 1
@pytest.mark.parametrize('check_interval', [1.0])
def test_inf_val_dataloader(tmpdir, check_interval):
"""Test inf val data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__infinite
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
val_check_interval=check_interval,
)
result = trainer.fit(model)
# verify training completed
assert result == 1
def test_error_on_zero_len_dataloader(tmpdir):
""" Test that error is raised if a zero-length dataloader is defined """
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__zero_length
# fit model
with pytest.raises(ValueError):
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
limit_test_batches=0.1,
)
trainer.fit(model)
@pytest.mark.skipif(platform.system() == 'Windows', reason='Does not apply to Windows platform.')
@pytest.mark.parametrize('ckpt_path', [None, 'best', 'specific'])
@patch('pytorch_lightning.trainer.data_loading.multiprocessing.cpu_count', return_value=4)
def test_warning_with_few_workers(mock, tmpdir, ckpt_path):
""" Test that error is raised if dataloader with only a few workers is used """
model = EvalModelTemplate()
# logger file to get meta
train_dl = model.dataloader(train=True)
train_dl.num_workers = 0
val_dl = model.dataloader(train=False)
val_dl.num_workers = 0
train_dl = model.dataloader(train=False)
train_dl.num_workers = 0
fit_options = dict(train_dataloader=train_dl,
val_dataloaders=val_dl)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
)
# fit model
with pytest.warns(
UserWarning, match='The dataloader, train dataloader, does not have many workers which may be a bottleneck.'
):
trainer.fit(model, **fit_options)
with pytest.warns(
UserWarning, match='The dataloader, val dataloader 0, does not have many workers which may be a bottleneck.'
):
trainer.fit(model, **fit_options)
if ckpt_path == 'specific':
ckpt_path = trainer.checkpoint_callback.best_model_path
test_options = dict(test_dataloaders=train_dl, ckpt_path=ckpt_path)
with pytest.warns(
UserWarning, match='The dataloader, test dataloader 0, does not have many workers which may be a bottleneck.'
):
trainer.test(**test_options)
@pytest.mark.xfail(
parse(torch.__version__) < parse("1.4.0"),
reason="IterableDataset with __len__ before 1.4 raises",
)
def test_warning_with_iterable_dataset_and_len(tmpdir):
""" Tests that a warning messages is shown when an IterableDataset defines `__len__`. """
model = EvalModelTemplate()
original_dataset = model.train_dataloader().dataset
class IterableWithLen(IterableDataset):
def __iter__(self):
return iter(original_dataset)
def __len__(self):
return len(original_dataset)
dataloader = DataLoader(IterableWithLen(), batch_size=16)
assert _has_len(dataloader)
assert _has_iterable_dataset(dataloader)
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=3,
)
with pytest.warns(UserWarning, match='Your `IterableDataset` has `__len__` defined.'):
trainer.fit(model, train_dataloader=dataloader, val_dataloaders=[dataloader])
with pytest.warns(UserWarning, match='Your `IterableDataset` has `__len__` defined.'):
trainer.test(model, test_dataloaders=[dataloader])
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason='Test requires multiple GPUs')
def test_dataloader_reinit_for_subclass(tmpdir):
class CustomDataLoader(torch.utils.data.DataLoader):
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None, dummy_kwarg=None, **kwargs):
super().__init__(dataset, batch_size, shuffle, sampler, batch_sampler,
num_workers, collate_fn, pin_memory, drop_last, timeout,
worker_init_fn)
self.dummy_kwarg = dummy_kwarg
trainer = Trainer(
gpus=[0, 1],
num_nodes=1,
distributed_backend='ddp_spawn',
default_root_dir=tmpdir,
)
class CustomDummyObj:
sampler = None
result = trainer.auto_add_sampler(CustomDummyObj(), train=True)
assert isinstance(result, CustomDummyObj), "Wrongly reinstantiated data loader"
dataset = list(range(1000))
result = trainer.auto_add_sampler(CustomDataLoader(dataset), train=True)
assert isinstance(result, torch.utils.data.DataLoader)
assert isinstance(result, CustomDataLoader)
assert hasattr(result, 'dummy_kwarg')
# Shuffled DataLoader should also work
result = trainer.auto_add_sampler(CustomDataLoader(list(range(1000)), shuffle=True), train=True)
assert isinstance(result, torch.utils.data.DataLoader)
assert isinstance(result, CustomDataLoader)
assert hasattr(result, 'dummy_kwarg')
class CustomSampler(torch.utils.data.Sampler):
pass
# Should raise an error if existing sampler is being replaced
with pytest.raises(MisconfigurationException, match='DistributedSampler'):
trainer.auto_add_sampler(
CustomDataLoader(list(range(1000)), sampler=CustomSampler(list(range(1000)))), train=True)
class DistribSamplerCallback(Callback):
def on_train_start(self, trainer, pl_module):
train_sampler = trainer.train_dataloader.sampler
assert isinstance(train_sampler, DistributedSampler)
assert train_sampler.shuffle
def on_validation_start(self, trainer, pl_module):
val_sampler = trainer.val_dataloaders[0].sampler
assert isinstance(val_sampler, DistributedSampler)
assert not val_sampler.shuffle
def on_test_start(self, trainer, pl_module):
test_sampler = trainer.test_dataloaders[0].sampler
assert isinstance(test_sampler, DistributedSampler)
assert not test_sampler.shuffle
@pytest.mark.skipif(platform.system() == 'Windows', reason='Does not apply to Windows platform.')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason='Test requires multiple GPUs')
def test_dataloader_distributed_sampler(tmpdir):
""" Test DistributedSampler and it's arguments for DDP backend """
model = EvalModelTemplate()
trainer = Trainer(
gpus=[0, 1],
num_nodes=1,
distributed_backend='ddp_spawn',
default_root_dir=tmpdir,
max_steps=1,
callbacks=[DistribSamplerCallback()]
)
trainer.fit(model)
trainer.test(ckpt_path=None)
@pytest.mark.skipif(torch.cuda.device_count() < 3, reason='Test requires multiple GPUs')
def test_batch_size_smaller_than_num_gpus(tmpdir):
# we need at least 3 gpus for this test
num_gpus = 3
batch_size = 3
class CurrentTestModel(EvalModelTemplate):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# batch norm doesn't work with batch size 1, we replace it
self.c_d1_bn = torch.nn.ReLU()
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
loss = output['loss']
# we make sure to add some metrics to the output dict,
# this is essential for this test
output['progress_bar'] = {'train_loss': loss}
return output
def train_dataloader(self):
dataloader = super().train_dataloader()
# construct a dataset with a size that is not divisible by num_gpus
# therefore the last batch will have a size < num_gpus
size = num_gpus * batch_size + (num_gpus - 1)
dataset = Subset(dataloader.dataset, range(size))
dataloader = DataLoader(
dataset,
batch_size=self.batch_size,
drop_last=False,
)
return dataloader
hparams = EvalModelTemplate.get_default_hparams()
hparams['batch_size'] = batch_size
model = CurrentTestModel(**hparams)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0,
gpus=num_gpus,
)
# we expect the reduction for the metrics also to happen on the last batch
# where we will get fewer metrics than gpus
result = trainer.fit(model)
assert 1 == result
@pytest.mark.parametrize('check_interval', [1.0])
def test_val_dataloader_not_implemented_error(tmpdir, check_interval):
"""Test not_implemented_error data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__not_implemented_error
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=5,
max_epochs=1,
val_check_interval=check_interval,
)
result = trainer.fit(model)
# verify training completed
assert result == 1
@pytest.mark.parametrize('check_interval', [50, 1.0])
def test_train_dataloader_not_implemented_error(tmpdir, check_interval):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__not_implemented_error
model.val_dataloader = model.val_dataloader__not_implemented_error
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=5,
max_epochs=1,
val_check_interval=check_interval
)
result = trainer.fit(model)
# verify training completed
assert result == 1
def test_train_dataloader_not_implemented_error_failed(tmpdir):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.train_dataloader = model.train_dataloader__not_implemented_error
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, val_check_interval=0.5)
with pytest.raises(MisconfigurationException, match='using an IterableDataset'):
trainer.fit(model)
def test_val_dataloader_not_implemented_error_failed(tmpdir):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__not_implemented_error
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, limit_val_batches=0.5)
with pytest.raises(MisconfigurationException, match='using an IterableDataset'):
trainer.fit(model)
def test_test_dataloader_not_implemented_error_failed(tmpdir):
"""Test not_implemented_error train data loader (e.g. IterableDataset)"""
model = EvalModelTemplate()
model.test_dataloader = model.test_dataloader__not_implemented_error
trainer = Trainer(default_root_dir=tmpdir, max_steps=5, max_epochs=1, limit_test_batches=0.5)
with pytest.raises(MisconfigurationException, match='using an IterableDataset'):
trainer.test(model)