-
-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathsupport_enumeration.py
318 lines (254 loc) · 8.3 KB
/
support_enumeration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
"""
Author: Daisuke Oyama
Compute all mixed Nash equilibria of a 2-player (non-degenerate) normal
form game by support enumeration.
References
----------
B. von Stengel, "Equilibrium Computation for Two-Player Games in
Strategic and Extensive Form," Chapter 3, N. Nisan, T. Roughgarden, E.
Tardos, and V. Vazirani eds., Algorithmic Game Theory, 2007.
"""
from distutils.version import LooseVersion
import numpy as np
import numba
from numba import jit
least_numba_version = LooseVersion('0.28')
is_numba_required_installed = True
if LooseVersion(numba.__version__) < least_numba_version:
is_numba_required_installed = False
nopython = is_numba_required_installed
EPS = np.finfo(float).eps
def support_enumeration(g):
"""
Compute mixed-action Nash equilibria with equal support size for a
2-player normal form game by support enumeration. For a
non-degenerate game input, these are all the Nash equilibria.
The algorithm checks all the equal-size support pairs; if the
players have the same number n of actions, there are 2n choose n
minus 1 such pairs. This should thus be used only for small games.
Parameters
----------
g : NormalFormGame
NormalFormGame instance with 2 players.
Returns
-------
list(tuple(ndarray(float, ndim=1)))
List containing tuples of Nash equilibrium mixed actions.
Notes
-----
This routine is jit-complied if Numba version 0.28 or above is
installed.
"""
return list(support_enumeration_gen(g))
def support_enumeration_gen(g):
"""
Generator version of `support_enumeration`.
Parameters
----------
g : NormalFormGame
NormalFormGame instance with 2 players.
Yields
-------
tuple(ndarray(float, ndim=1))
Tuple of Nash equilibrium mixed actions.
"""
try:
N = g.N
except:
raise TypeError('input must be a 2-player NormalFormGame')
if N != 2:
raise NotImplementedError('Implemented only for 2-player games')
return _support_enumeration_gen(g.players[0].payoff_array,
g.players[1].payoff_array)
@jit(nopython=nopython) # cache=True raises _pickle.PicklingError
def _support_enumeration_gen(payoff_matrix0, payoff_matrix1):
"""
Main body of `support_enumeration_gen`.
Parameters
----------
payoff_matrix0 : ndarray(float, ndim=2)
Payoff matrix for player 0, of shape (m, n)
payoff_matrix1 : ndarray(float, ndim=2)
Payoff matrix for player 1, of shape (n, m)
Yields
------
out : tuple(ndarray(float, ndim=1))
Tuple of Nash equilibrium mixed actions, of lengths m and n,
respectively.
"""
nums_actions = payoff_matrix0.shape[0], payoff_matrix1.shape[0]
n_min = min(nums_actions)
for k in range(1, n_min+1):
supps = (np.arange(k), np.empty(k, np.int_))
actions = (np.empty(k), np.empty(k))
A = np.empty((k+1, k+1))
A[:-1, -1] = -1
A[-1, :-1] = 1
A[-1, -1] = 0
b = np.zeros(k+1)
b[-1] = 1
while supps[0][-1] < nums_actions[0]:
supps[1][:] = np.arange(k)
while supps[1][-1] < nums_actions[1]:
if _indiff_mixed_action(payoff_matrix0, supps[0], supps[1],
A, b, actions[1]):
if _indiff_mixed_action(payoff_matrix1, supps[1], supps[0],
A, b, actions[0]):
out = (np.zeros(nums_actions[0]),
np.zeros(nums_actions[1]))
for p, (supp, action) in enumerate(zip(supps,
actions)):
out[p][supp] = action
yield out
_next_k_array(supps[1])
_next_k_array(supps[0])
@jit(nopython=nopython)
def _indiff_mixed_action(payoff_matrix, own_supp, opp_supp, A, b, out):
"""
Given a player's payoff matrix `payoff_matrix`, an array `own_supp`
of this player's actions, and an array `opp_supp` of the opponent's
actions, each of length k, compute the opponent's mixed action whose
support equals `opp_supp` and for which the player is indifferent
among the actions in `own_supp`, if any such exists. Return `True`
if such a mixed action exists and actions in `own_supp` are indeed
best responses to it, in which case the outcome is stored in `out`;
`False` otherwise. Arrays `A` and `b` are used in intermediate
steps.
Parameters
----------
payoff_matrix : ndarray(ndim=2)
The player's payoff matrix, of shape (m, n).
own_supp : ndarray(int, ndim=1)
Array containing the player's action indices, of length k.
opp_supp : ndarray(int, ndim=1)
Array containing the opponent's action indices, of length k.
A : ndarray(float, ndim=2)
Array used in intermediate steps, of shape (k+1, k+1). The
following values must be assigned in advance: `A[:-1, -1] = -1`,
`A[-1, :-1] = 1`, and `A[-1, -1] = 0`.
b : ndarray(float, ndim=1)
Array used in intermediate steps, of shape (k+1,). The following
values must be assigned in advance `b[:-1] = 0` and `b[-1] = 1`.
out : ndarray(float, ndim=1)
Array of length k to store the k nonzero values of the desired
mixed action.
Returns
-------
bool
`True` if a desired mixed action exists and `False` otherwise.
"""
m = payoff_matrix.shape[0]
k = len(own_supp)
A[:-1, :-1] = payoff_matrix[own_supp, :][:, opp_supp]
if _is_singular(A):
return False
sol = np.linalg.solve(A, b)
if (sol[:-1] <= 0).any():
return False
out[:] = sol[:-1]
val = sol[-1]
if k == m:
return True
own_supp_flags = np.zeros(m, np.bool_)
own_supp_flags[own_supp] = True
for i in range(m):
if not own_supp_flags[i]:
payoff = 0
for j in range(k):
payoff += payoff_matrix[i, opp_supp[j]] * out[j]
if payoff > val:
return False
return True
@jit(nopython=True, cache=True)
def _next_k_combination(x):
"""
Find the next k-combination, as described by an integer in binary
representation with the k set bits, by "Gosper's hack".
Copy-paste from en.wikipedia.org/wiki/Combinatorial_number_system
Parameters
----------
x : int
Integer with k set bits.
Returns
-------
int
Smallest integer > x with k set bits.
"""
u = x & -x
v = u + x
return v + (((v ^ x) // u) >> 2)
@jit(nopython=True, cache=True)
def _next_k_array(a):
"""
Given an array `a` of k distinct nonnegative integers, return the
next k-array in lexicographic ordering of the descending sequences
of the elements. `a` is modified in place.
Parameters
----------
a : ndarray(int, ndim=1)
Array of length k.
Returns
-------
a : ndarray(int, ndim=1)
View of `a`.
Examples
--------
Enumerate all the subsets with k elements of the set {0, ..., n-1}.
>>> n, k = 4, 2
>>> a = np.arange(k)
>>> while a[-1] < n:
... print(a)
... a = _next_k_array(a)
...
[0 1]
[0 2]
[1 2]
[0 3]
[1 3]
[2 3]
"""
k = len(a)
if k == 0:
return a
x = 0
for i in range(k):
x += (1 << a[i])
x = _next_k_combination(x)
pos = 0
for i in range(k):
while x & 1 == 0:
x = x >> 1
pos += 1
a[i] = pos
x = x >> 1
pos += 1
return a
if is_numba_required_installed:
@jit(nopython=True, cache=True)
def _is_singular(a):
s = numba.targets.linalg._compute_singular_values(a)
if s[-1] <= s[0] * EPS:
return True
else:
return False
else:
def _is_singular(a):
s = np.linalg.svd(a, compute_uv=False)
if s[-1] <= s[0] * EPS:
return True
else:
return False
_is_singular_docstr = \
"""
Determine whether matrix `a` is numerically singular, by checking
its singular values.
Parameters
----------
a : ndarray(float, ndim=2)
2-dimensional array of floats.
Returns
-------
bool
Whether `a` is numerically singular.
"""
_is_singular.__doc__ = _is_singular_docstr