1
1
"""
2
2
Filename: compute_fp.py
3
- Authors: Thomas Sargent, John Stachurski
3
+ Authors: Thomas Sargent, John Stachurski, Daisuke Oyama
4
4
5
- Compute the fixed point of a given operator T, starting from
5
+ Compute an approximate fixed point of a given operator T, starting from
6
6
specified initial condition v.
7
7
8
8
"""
9
9
import time
10
+ import warnings
10
11
import numpy as np
12
+ from numba import jit , generated_jit , types
13
+ from .game_theory .lemke_howson import lemke_howson_tbl , get_mixed_actions
11
14
12
15
13
16
def _print_after_skip (skip , it = None , dist = None , etime = None ):
@@ -33,27 +36,59 @@ def _print_after_skip(skip, it=None, dist=None, etime=None):
33
36
return
34
37
35
38
36
- def compute_fixed_point (T , v , error_tol = 1e-3 , max_iter = 50 , verbose = 1 ,
37
- print_skip = 5 , * args , ** kwargs ):
39
+ _convergence_msg = 'Converged in {iterate} steps'
40
+ _non_convergence_msg = \
41
+ 'max_iter attained before convergence in compute_fixed_point'
42
+
43
+
44
+ def _is_approx_fp (T , v , error_tol , * args , ** kwargs ):
45
+ error = np .max (np .abs (T (v , * args , ** kwargs ) - v ))
46
+ return error <= error_tol
47
+
48
+
49
+ def compute_fixed_point (T , v , error_tol = 1e-3 , max_iter = 50 , verbose = 2 ,
50
+ print_skip = 5 , method = 'iteration' , * args , ** kwargs ):
38
51
"""
39
- Computes and returns :math:`T^k v`, an approximate fixed point.
52
+ Computes and returns an approximate fixed point of the function `T`.
53
+
54
+ The default method `'iteration'` simply iterates the function given
55
+ an initial condition `v` and returns :math:`T^k v` when the
56
+ condition :math:`\lVert T^k v - T^{k-1} v\r Vert \leq
57
+ \mathrm{error_tol}` is satisfied or the number of iterations
58
+ :math:`k` reaches `max_iter`. Provided that `T` is a contraction
59
+ mapping or similar, :math:`T^k v` will be an approximation to the
60
+ fixed point.
40
61
41
- Here T is an operator, v is an initial condition and k is the number
42
- of iterates. Provided that T is a contraction mapping or similar,
43
- :math:`T^k v` will be an approximation to the fixed point.
62
+ The method `'imitation_game'` uses the "imitation game algorithm"
63
+ developed by McLennan and Tourky [1]_, which internally constructs
64
+ a sequence of two-player games called imitation games and utilizes
65
+ their Nash equilibria, computed by the Lemke-Howson algorithm
66
+ routine. It finds an approximate fixed point of `T`, a point
67
+ :math:`v^*` such that :math:`\lVert T(v) - v\r Vert \leq
68
+ \mathrm{error_tol}`, provided `T` is a function that satisfies the
69
+ assumptions of Brouwer's fixed point theorm, i.e., a continuous
70
+ function that maps a compact and convex set to itself.
44
71
45
72
Parameters
46
73
----------
47
74
T : callable
48
75
A callable object (e.g., function) that acts on v
49
76
v : object
50
- An object such that T(v) is defined
77
+ An object such that T(v) is defined; modified in place if
78
+ `method='iteration' and `v` is an array
51
79
error_tol : scalar(float), optional(default=1e-3)
52
80
Error tolerance
53
81
max_iter : scalar(int), optional(default=50)
54
82
Maximum number of iterations
55
- verbose : bool, optional(default=True)
56
- If True then print current error at each iterate.
83
+ verbose : scalar(int), optional(default=2)
84
+ Level of feedback (0 for no output, 1 for warnings only, 2 for
85
+ warning and residual error reports during iteration)
86
+ print_skip : scalar(int), optional(default=5)
87
+ How many iterations to apply between print messages (effective
88
+ only when `verbose=2`)
89
+ method : str in {'iteration', 'imitation_game'},
90
+ optional(default='iteration')
91
+ Method of computing an approximate fixed point
57
92
args, kwargs :
58
93
Other arguments and keyword arguments that are passed directly
59
94
to the function T each time it is called
@@ -63,25 +98,274 @@ def compute_fixed_point(T, v, error_tol=1e-3, max_iter=50, verbose=1,
63
98
v : object
64
99
The approximate fixed point
65
100
101
+ References
102
+ ----------
103
+ .. [1] A. McLennan and R. Tourky, "From Imitation Games to
104
+ Kakutani," 2006.
105
+
66
106
"""
107
+ if max_iter < 1 :
108
+ raise ValueError ('max_iter must be a positive integer' )
109
+
110
+ if verbose not in (0 , 1 , 2 ):
111
+ raise ValueError ('verbose should be 0, 1 or 2' )
112
+
113
+ if method not in ['iteration' , 'imitation_game' ]:
114
+ raise ValueError ('invalid method' )
115
+
116
+ if method == 'imitation_game' :
117
+ is_approx_fp = \
118
+ lambda v : _is_approx_fp (T , v , error_tol , * args , ** kwargs )
119
+ v_star , converged , iterate = \
120
+ _compute_fixed_point_ig (T , v , max_iter , verbose , print_skip ,
121
+ is_approx_fp , * args , ** kwargs )
122
+ return v_star
123
+
124
+ # method == 'iteration'
67
125
iterate = 0
68
126
error = error_tol + 1
69
127
70
- if verbose :
128
+ if verbose == 2 :
71
129
start_time = time .time ()
72
130
_print_after_skip (print_skip , it = None )
73
131
74
- while iterate < max_iter and error > error_tol :
132
+ while True :
75
133
new_v = T (v , * args , ** kwargs )
76
134
iterate += 1
77
135
error = np .max (np .abs (new_v - v ))
78
136
79
- if verbose :
80
- etime = time .time () - start_time
81
- _print_after_skip (print_skip , iterate , error , etime )
82
-
83
137
try :
84
138
v [:] = new_v
85
139
except TypeError :
86
140
v = new_v
141
+
142
+ if error <= error_tol or iterate >= max_iter :
143
+ break
144
+
145
+ if verbose == 2 :
146
+ etime = time .time () - start_time
147
+ _print_after_skip (print_skip , iterate , error , etime )
148
+
149
+ if verbose == 2 :
150
+ etime = time .time () - start_time
151
+ print_skip = 1
152
+ _print_after_skip (print_skip , iterate , error , etime )
153
+ if verbose >= 1 :
154
+ if error > error_tol :
155
+ warnings .warn (_non_convergence_msg , RuntimeWarning )
156
+ elif verbose == 2 :
157
+ print (_convergence_msg .format (iterate = iterate ))
158
+
87
159
return v
160
+
161
+
162
+ def _compute_fixed_point_ig (T , v , max_iter , verbose , print_skip , is_approx_fp ,
163
+ * args , ** kwargs ):
164
+ """
165
+ Implement the imitation game algorithm by McLennan and Tourky (2006)
166
+ for computing an approximate fixed point of `T`.
167
+
168
+ Parameters
169
+ ----------
170
+ is_approx_fp : callable
171
+ A callable with signature `is_approx_fp(v)` which determines
172
+ whether `v` is an approximate fixed point with a bool return
173
+ value (i.e., True or False)
174
+
175
+ For the other parameters, see Parameters in compute_fixed_point.
176
+
177
+ Returns
178
+ -------
179
+ x_new : scalar(float) or ndarray(float)
180
+ Approximate fixed point.
181
+
182
+ converged : bool
183
+ Whether the routine has converged.
184
+
185
+ iterate : scalar(int)
186
+ Number of iterations.
187
+
188
+ """
189
+ if verbose == 2 :
190
+ start_time = time .time ()
191
+ _print_after_skip (print_skip , it = None )
192
+
193
+ x_new = v
194
+ y_new = T (x_new , * args , ** kwargs )
195
+ iterate = 1
196
+ converged = is_approx_fp (x_new )
197
+
198
+ if converged or iterate >= max_iter :
199
+ if verbose == 2 :
200
+ error = np .max (np .abs (y_new - x_new ))
201
+ etime = time .time () - start_time
202
+ print_skip = 1
203
+ _print_after_skip (print_skip , iterate , error , etime )
204
+ if verbose >= 1 :
205
+ if not converged :
206
+ warnings .warn (_non_convergence_msg , RuntimeWarning )
207
+ elif verbose == 2 :
208
+ print (_convergence_msg .format (iterate = iterate ))
209
+ return x_new , converged , iterate
210
+
211
+ if verbose == 2 :
212
+ error = np .max (np .abs (y_new - x_new ))
213
+ etime = time .time () - start_time
214
+ _print_after_skip (print_skip , iterate , error , etime )
215
+
216
+ # Length of the arrays to store the computed sequences of x and y.
217
+ # If exceeded, reset to min(max_iter, buff_size*2).
218
+ buff_size = 2 ** 8
219
+ buff_size = min (max_iter , buff_size )
220
+
221
+ shape = (buff_size ,) + np .asarray (x_new ).shape
222
+ X , Y = np .empty (shape ), np .empty (shape )
223
+ X [0 ], Y [0 ] = x_new , y_new
224
+ x_new = Y [0 ]
225
+
226
+ tableaux = tuple (np .empty ((buff_size , buff_size * 2 + 1 )) for i in range (2 ))
227
+ bases = tuple (np .empty (buff_size , dtype = int ) for i in range (2 ))
228
+ max_piv = 10 ** 6 # Max number of pivoting steps in lemke_howson_tbl
229
+
230
+ while True :
231
+ y_new = T (x_new , * args , ** kwargs )
232
+ iterate += 1
233
+ converged = is_approx_fp (x_new )
234
+
235
+ if converged or iterate >= max_iter :
236
+ break
237
+
238
+ if verbose == 2 :
239
+ error = np .max (np .abs (y_new - x_new ))
240
+ etime = time .time () - start_time
241
+ _print_after_skip (print_skip , iterate , error , etime )
242
+
243
+ try :
244
+ X [iterate - 1 ] = x_new
245
+ Y [iterate - 1 ] = y_new
246
+ except IndexError :
247
+ buff_size = min (max_iter , buff_size * 2 )
248
+ shape = (buff_size ,) + X .shape [1 :]
249
+ X_tmp , Y_tmp = X , Y
250
+ X , Y = np .empty (shape ), np .empty (shape )
251
+ X [:X_tmp .shape [0 ]], Y [:Y_tmp .shape [0 ]] = X_tmp , Y_tmp
252
+ X [iterate - 1 ], Y [iterate - 1 ] = x_new , y_new
253
+
254
+ tableaux = tuple (np .empty ((buff_size , buff_size * 2 + 1 ))
255
+ for i in range (2 ))
256
+ bases = tuple (np .empty (buff_size , dtype = int ) for i in range (2 ))
257
+
258
+ m = iterate
259
+ tableaux_curr = tuple (tableau [:m , :2 * m + 1 ] for tableau in tableaux )
260
+ bases_curr = tuple (basis [:m ] for basis in bases )
261
+ _initialize_tableaux_ig (X [:m ], Y [:m ], tableaux_curr , bases_curr )
262
+ converged , num_iter = lemke_howson_tbl (
263
+ tableaux_curr , bases_curr , init_pivot = m - 1 , max_iter = max_piv
264
+ )
265
+ _ , rho = get_mixed_actions (tableaux_curr , bases_curr )
266
+
267
+ if Y .ndim <= 2 :
268
+ x_new = rho .dot (Y [:m ])
269
+ else :
270
+ shape_Y = Y .shape
271
+ Y_2d = Y .reshape (shape_Y [0 ], np .prod (shape_Y [1 :]))
272
+ x_new = rho .dot (Y_2d [:m ]).reshape (shape_Y [1 :])
273
+
274
+ if verbose == 2 :
275
+ error = np .max (np .abs (y_new - x_new ))
276
+ etime = time .time () - start_time
277
+ print_skip = 1
278
+ _print_after_skip (print_skip , iterate , error , etime )
279
+ if verbose >= 1 :
280
+ if not converged :
281
+ warnings .warn (_non_convergence_msg , RuntimeWarning )
282
+ elif verbose == 2 :
283
+ print (_convergence_msg .format (iterate = iterate ))
284
+
285
+ return x_new , converged , iterate
286
+
287
+
288
+ @jit (nopython = True )
289
+ def _initialize_tableaux_ig (X , Y , tableaux , bases ):
290
+ """
291
+ Given sequences `X` and `Y` of ndarrays, initialize the tableau and
292
+ basis arrays in place for the "geometric" imitation game as defined
293
+ in McLennan and Tourky (2006), to be passed to `lemke_howson_tbl`.
294
+
295
+ Parameters
296
+ ----------
297
+ X, Y : ndarray(float)
298
+ Arrays of the same shape (m, n).
299
+
300
+ tableaux : tuple(ndarray(float, ndim=2))
301
+ Tuple of two arrays to be used to store the tableaux, of shape
302
+ (2m, 2m). Modified in place.
303
+
304
+ bases : tuple(ndarray(int, ndim=1))
305
+ Tuple of two arrays to be used to store the bases, of shape
306
+ (m,). Modified in place.
307
+
308
+ Returns
309
+ -------
310
+ tableaux : tuple(ndarray(float, ndim=2))
311
+ View to `tableaux`.
312
+
313
+ bases : tuple(ndarray(int, ndim=1))
314
+ View to `bases`.
315
+
316
+ """
317
+ m = X .shape [0 ]
318
+ min_ = np .zeros (m )
319
+
320
+ # Mover
321
+ for i in range (m ):
322
+ for j in range (2 * m ):
323
+ if j == i or j == i + m :
324
+ tableaux [0 ][i , j ] = 1
325
+ else :
326
+ tableaux [0 ][i , j ] = 0
327
+ # Right hand side
328
+ tableaux [0 ][i , 2 * m ] = 1
329
+
330
+ # Imitator
331
+ for i in range (m ):
332
+ # Slack variables
333
+ for j in range (m ):
334
+ if j == i :
335
+ tableaux [1 ][i , j ] = 1
336
+ else :
337
+ tableaux [1 ][i , j ] = 0
338
+ # Payoff variables
339
+ for j in range (m ):
340
+ d = X [i ] - Y [j ]
341
+ tableaux [1 ][i , m + j ] = _square_sum (d ) * (- 1 )
342
+ if tableaux [1 ][i , m + j ] < min_ [j ]:
343
+ min_ [j ] = tableaux [1 ][i , m + j ]
344
+ # Right hand side
345
+ tableaux [1 ][i , 2 * m ] = 1
346
+ # Shift the payoff values
347
+ for i in range (m ):
348
+ for j in range (m ):
349
+ tableaux [1 ][i , m + j ] -= min_ [j ]
350
+ tableaux [1 ][i , m + j ] += 1
351
+
352
+ for pl , start in enumerate ([m , 0 ]):
353
+ for i in range (m ):
354
+ bases [pl ][i ] = start + i
355
+
356
+ return tableaux , bases
357
+
358
+
359
+ @generated_jit (nopython = True , cache = True )
360
+ def _square_sum (a ):
361
+ if isinstance (a , types .Number ):
362
+ return lambda a : a ** 2
363
+ elif isinstance (a , types .Array ):
364
+ return _square_sum_array
365
+
366
+
367
+ def _square_sum_array (a ):
368
+ sum_ = 0
369
+ for x in a .flat :
370
+ sum_ += x ** 2
371
+ return sum_
0 commit comments