Skip to content

Commit a82ba69

Browse files
natashawatkinsmmcky
authored andcommitted
Fix math rendering in docstrings (#315)
* add math rendering and clean up lss.py * add math rendering and clean up kalman.py * fix error and math rendering in approximation.py * move class docstring outside init in ivp.py * fix math rendering and some documentation errors in lqcontrol.py * fix math rendering and clean up matrix.eqn.py * fix math rendering and clean up robustlq.py * fix math rendering in quadsums.py * fix math rendering and clean up code in estspec.py * fix math rendering in arma.py * fix math rendering in lae.py * fix previous commit * fix brackets in lss.py * fix to approximation.py * Fix to matrix_eqn.py docstring * Fixes to lss.py * Update links in docs
1 parent c60251d commit a82ba69

11 files changed

+296
-194
lines changed

quantecon/arma.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,8 @@ class ARMA(object):
2424
2525
X_t = \phi X_{t-1} + \epsilon_t + \theta \epsilon_{t-1}
2626
27-
where :math:`epsilon_t` is a white noise process with standard
28-
deviation :math:`sigma`. If phi and theta are arrays or sequences,
27+
where :math:`\epsilon_t` is a white noise process with standard
28+
deviation :math:`\sigma`. If phi and theta are arrays or sequences,
2929
then the interpretation is the ARMA(p, q) model
3030
3131
.. math::
@@ -182,16 +182,16 @@ def spectral_density(self, two_pi=True, res=1200):
182182
183183
.. math::
184184
185-
f(w) = \sum_k \gamma(k) exp(-ikw)
185+
f(w) = \sum_k \gamma(k) \exp(-ikw)
186186
187187
where gamma is the autocovariance function and the sum is over
188188
the set of all integers.
189189
190190
Parameters
191191
----------
192192
two_pi : Boolean, optional
193-
Compute the spectral density function over [0, pi] if
194-
two_pi is False and [0, 2 pi] otherwise. Default value is
193+
Compute the spectral density function over :math:`[0, \pi]` if
194+
two_pi is False and :math:`[0, 2 \pi]` otherwise. Default value is
195195
True
196196
res : scalar or array_like(int), optional(default=1200)
197197
If res is a scalar then the spectral density is computed at

quantecon/estspec.py

+15-15
Original file line numberDiff line numberDiff line change
@@ -74,17 +74,18 @@ def smooth(x, window_len=7, window='hanning'):
7474

7575

7676
def periodogram(x, window=None, window_len=7):
77-
"""
77+
r"""
7878
Computes the periodogram
7979
8080
.. math::
8181
82-
I(w) = (1 / n) | sum_{t=0}^{n-1} x_t e^{itw} |^2
82+
I(w) = \frac{1}{n} \Big[ \sum_{t=0}^{n-1} x_t e^{itw} \Big] ^2
8383
84-
at the Fourier frequences w_j := 2 pi j / n, j = 0, ..., n - 1,
85-
using the fast Fourier transform. Only the frequences w_j in [0,
86-
pi] and corresponding values I(w_j) are returned. If a window type
87-
is given then smoothing is performed.
84+
at the Fourier frequences :math:`w_j := \frac{2 \pi j}{n}`,
85+
:math:`j = 0, \dots, n - 1`, using the fast Fourier transform. Only the
86+
frequences :math:`w_j` in :math:`[0, \pi]` and corresponding values
87+
:math:`I(w_j)` are returned. If a window type is given then smoothing
88+
is performed.
8889
8990
Parameters
9091
----------
@@ -139,19 +140,18 @@ def ar_periodogram(x, window='hanning', window_len=7):
139140
140141
"""
141142
# === run regression === #
142-
x_lag = x[:-1] # lagged x
143-
X = np.array([np.ones(len(x_lag)), x_lag]).T # add constant
144-
145-
y = np.array(x[1:]) # current x
146-
147-
beta_hat = np.linalg.solve(X.T @ X, X.T @ y) # solve for beta hat
148-
e_hat = y - X @ beta_hat # compute residuals
149-
phi = beta_hat[1] # pull out phi parameter
143+
x_lag = x[:-1] # lagged x
144+
X = np.array([np.ones(len(x_lag)), x_lag]).T # add constant
145+
146+
y = np.array(x[1:]) # current x
147+
148+
beta_hat = np.linalg.solve(X.T @ X, X.T @ y) # solve for beta hat
149+
e_hat = y - X @ beta_hat # compute residuals
150+
phi = beta_hat[1] # pull out phi parameter
150151

151152
# === compute periodogram on residuals === #
152153
w, I_w = periodogram(e_hat, window=window, window_len=window_len)
153154

154-
155155
# === compute periodogram on residuals === #
156156
w, I_w = periodogram(e_hat, window=window, window_len=window_len)
157157

quantecon/ivp.py

+19-17
Original file line numberDiff line numberDiff line change
@@ -24,28 +24,30 @@
2424

2525

2626
class IVP(integrate.ode):
27+
28+
r"""
29+
Creates an instance of the IVP class.
2730
28-
def __init__(self, f, jac=None):
29-
r"""
30-
Creates an instance of the IVP class.
31+
Parameters
32+
----------
33+
f : callable ``f(t, y, *f_args)``
34+
Right hand side of the system of equations defining the ODE.
35+
The independent variable, ``t``, is a ``scalar``; ``y`` is
36+
an ``ndarray`` of dependent variables with ``y.shape ==
37+
(n,)``. The function `f` should return a ``scalar``,
38+
``ndarray`` or ``list`` (but not a ``tuple``).
39+
jac : callable ``jac(t, y, *jac_args)``, optional(default=None)
40+
Jacobian of the right hand side of the system of equations
41+
defining the ODE.
3142
32-
Parameters
33-
----------
34-
f : callable ``f(t, y, *f_args)``
35-
Right hand side of the system of equations defining the ODE.
36-
The independent variable, ``t``, is a ``scalar``; ``y`` is
37-
an ``ndarray`` of dependent variables with ``y.shape ==
38-
(n,)``. The function `f` should return a ``scalar``,
39-
``ndarray`` or ``list`` (but not a ``tuple``).
40-
jac : callable ``jac(t, y, *jac_args)``, optional(default=None)
41-
Jacobian of the right hand side of the system of equations
42-
defining the ODE.
43+
.. :math:
4344
44-
.. :math:
45+
\mathcal{J}_{i,j} = \bigg[\frac{\partial f_i}{\partial y_j}\bigg]
4546
46-
\mathcal{J}_{i,j} = \bigg[\frac{\partial f_i}{\partial y_j}\bigg]
47+
"""
48+
49+
def __init__(self, f, jac=None):
4750

48-
"""
4951
super(IVP, self).__init__(f, jac)
5052

5153
def _integrate_fixed_trajectory(self, h, T, step, relax):

quantecon/kalman.py

+47-23
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
"""
22
Filename: kalman.py
3-
Reference: http://quant-econ.net/py/kalman.html
3+
Reference: https://lectures.quantecon.org/py/kalman.html
44
55
Implements the Kalman filter for a linear Gaussian state space model.
66
@@ -17,11 +17,16 @@ class Kalman(object):
1717
r"""
1818
Implements the Kalman filter for the Gaussian state space model
1919
20+
.. math::
21+
2022
x_{t+1} = A x_t + C w_{t+1}
21-
y_t = G x_t + H v_t.
23+
y_t = G x_t + H v_t
24+
25+
Here :math:`x_t` is the hidden state and :math:`y_t` is the measurement.
26+
The shocks :math:`w_t` and :math:`v_t` are iid standard normals. Below
27+
we use the notation
2228
23-
Here x_t is the hidden state and y_t is the measurement. The shocks
24-
w_t and v_t are iid standard normals. Below we use the notation
29+
.. math::
2530
2631
Q := CC'
2732
R := HH'
@@ -52,7 +57,7 @@ class Kalman(object):
5257
References
5358
----------
5459
55-
http://quant-econ.net/py/kalman.html
60+
https://lectures.quantecon.org/py/kalman.html
5661
5762
"""
5863

@@ -91,28 +96,46 @@ def whitener_lss(self):
9196
that system to the time-invariant whitener represenation
9297
given by
9398
99+
.. math::
100+
94101
\tilde{x}_{t+1}^* = \tilde{A} \tilde{x} + \tilde{C} v
95102
a = \tilde{G} \tilde{x}
96103
97104
where
98105
106+
.. math::
107+
99108
\tilde{x}_t = [x+{t}, \hat{x}_{t}, v_{t}]
100109
101110
and
102111
103-
\tilde{A} = [A 0 0
104-
KG A-KG KH
105-
0 0 0]
112+
.. math::
106113
107-
\tilde{C} = [C 0
108-
0 0
109-
0 I]
114+
\tilde{A} =
115+
\begin{bmatrix}
116+
A & 0 & 0 \\
117+
KG & A-KG & KH \\
118+
0 & 0 & 0 \\
119+
\end{bmatrix}
110120
111-
\tilde{G} = [G -G H]
121+
.. math::
112122
113-
with A, C, G, H coming from the linear state space system
114-
that defines the Kalman instance
123+
\tilde{C} =
124+
\begin{bmatrix}
125+
C & 0 \\
126+
0 & 0 \\
127+
0 & I \\
128+
\end{bmatrix}
115129
130+
.. math::
131+
132+
\tilde{G} =
133+
\begin{bmatrix}
134+
G & -G & H \\
135+
\end{bmatrix}
136+
137+
with :math:`A, C, G, H` coming from the linear state space system
138+
that defines the Kalman instance
116139
117140
Returns
118141
-------
@@ -147,18 +170,19 @@ def whitener_lss(self):
147170

148171
return whitened_lss
149172

150-
151173
def prior_to_filtered(self, y):
152174
r"""
153175
Updates the moments (x_hat, Sigma) of the time t prior to the
154-
time t filtering distribution, using current measurement y_t.
176+
time t filtering distribution, using current measurement :math:`y_t`.
155177
156178
The updates are according to
157179
158-
x_{hat}^F = x_{hat} + Sigma G' (G Sigma G' + R)^{-1}
159-
(y - G x_{hat})
160-
Sigma^F = Sigma - Sigma G' (G Sigma G' + R)^{-1} G
161-
Sigma
180+
.. math::
181+
182+
\hat{x}^F = \hat{x} + \Sigma G' (G \Sigma G' + R)^{-1}
183+
(y - G \hat{x})
184+
\Sigma^F = \Sigma - \Sigma G' (G \Sigma G' + R)^{-1} G
185+
\Sigma
162186
163187
Parameters
164188
----------
@@ -210,15 +234,15 @@ def update(self, y):
210234

211235
def stationary_values(self):
212236
"""
213-
Computes the limit of Sigma_t as t goes to infinity by
214-
solving the associated Riccati equation. Computation is via the
237+
Computes the limit of :math:`\Sigma_t` as t goes to infinity by
238+
solving the associated Riccati equation. Computation is via the
215239
doubling algorithm (see the documentation in
216240
`matrix_eqn.solve_discrete_riccati`).
217241
218242
Returns
219243
-------
220244
Sigma_infinity : array_like or scalar(float)
221-
The infinite limit of Sigma_t
245+
The infinite limit of :math:`\Sigma_t`
222246
K_infinity : array_like or scalar(float)
223247
The stationary Kalman gain.
224248

quantecon/lae.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
"""
1+
r"""
22
Filename: lae.py
33
44
Authors: Thomas J. Sargent, John Stachurski,
@@ -11,12 +11,12 @@
1111
1212
\frac{1}{n} \sum_{i=0}^n p(X_{t-1}^i, y)
1313
14-
This is a density in y.
14+
This is a density in :math:`y`.
1515
1616
References
1717
----------
1818
19-
http://quant-econ.net/py/stationary_densities.html
19+
https://lectures.quantecon.org/py/stationary_densities.html
2020
2121
"""
2222
from textwrap import dedent

0 commit comments

Comments
 (0)