Skip to content

Commit b52559f

Browse files
authored
Merge pull request #414 from cdagnino/inequality_measures
Added basic inequality mesasures: lorenz curve and gini
2 parents c319203 + 176801b commit b52559f

File tree

3 files changed

+153
-0
lines changed

3 files changed

+153
-0
lines changed

quantecon/__init__.py

+1
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,7 @@
2323
# from .game_theory import <objects-here> #Place Holder if we wish to promote any general objects to the qe namespace.
2424
from .graph_tools import DiGraph, random_tournament_graph
2525
from .gridtools import cartesian, mlinspace, simplex_grid, simplex_index
26+
from .inequality import lorenz_curve, gini_coefficient
2627
from .kalman import Kalman
2728
from .lae import LAE
2829
from .arma import ARMA

quantecon/inequality.py

+86
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,86 @@
1+
"""
2+
Implements inequality and segregation measures such as Gini, Lorenz Curve
3+
4+
"""
5+
6+
import numpy as np
7+
from numba import njit, prange
8+
9+
10+
@njit
11+
def lorenz_curve(y):
12+
"""
13+
Calculates the Lorenz Curve, a graphical representation of the distribution of income
14+
or wealth.
15+
16+
It returns the cumulative share of people (x-axis) and the cumulative share of income earned
17+
18+
Parameters
19+
----------
20+
y : array_like(float or int, ndim=1)
21+
Array of income/wealth for each individual. Unordered or ordered is fine.
22+
23+
Returns
24+
-------
25+
cum_people : array_like(float, ndim=1)
26+
Cumulative share of people for each person index (i/n)
27+
cum_income : array_like(float, ndim=1)
28+
Cumulative share of income for each person index
29+
30+
31+
References
32+
----------
33+
https://en.wikipedia.org/wiki/Lorenz_curve
34+
35+
Examples
36+
--------
37+
a_val, n = 3, 10_000
38+
y = np.random.pareto(a_val, size=n)
39+
f_vals, l_vals = lorenz(y)
40+
#Plot
41+
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
42+
ax.plot(f_vals, l_vals, label="Pareto with a={0}".format(a_val))
43+
fig.suptitle("Pareto distribution with a={0}".format(a_val))
44+
45+
"""
46+
47+
n = len(y)
48+
y = np.sort(y)
49+
s = np.zeros(n + 1)
50+
s[1:] = np.cumsum(y)
51+
cum_people = np.zeros(n + 1)
52+
cum_income = np.zeros(n + 1)
53+
for i in range(1, n + 1):
54+
cum_people[i] = i / n
55+
cum_income[i] = s[i] / s[n]
56+
return cum_people, cum_income
57+
58+
59+
@njit(parallel=True)
60+
def gini_coefficient(y):
61+
r"""
62+
Implements the Gini inequality index
63+
64+
Parameters
65+
-----------
66+
y : array_like(float)
67+
Array of income/wealth for each individual. Ordered or unordered is fine
68+
69+
Returns
70+
-------
71+
Gini index: float
72+
The gini index describing the inequality of the array of income/wealth
73+
74+
References
75+
----------
76+
77+
https://en.wikipedia.org/wiki/Gini_coefficient
78+
"""
79+
n = len(y)
80+
i_sum = np.zeros(n)
81+
for i in prange(n):
82+
for j in range(n):
83+
i_sum[i] += abs(y[i] - y[j])
84+
return np.sum(i_sum) / (2 * n * np.sum(y))
85+
86+

quantecon/tests/test_inequality.py

+66
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,66 @@
1+
2+
"""
3+
Tests for inequality.py
4+
5+
"""
6+
7+
import numpy as np
8+
from numpy.testing import assert_allclose
9+
from quantecon import lorenz_curve, gini_coefficient
10+
11+
12+
def test_lorenz_curve():
13+
"""
14+
Tests `lorenz` function, which calculates the lorenz curve
15+
16+
An income distribution where everyone has almost the same wealth should
17+
be similar to a straight line
18+
19+
An income distribution where one person has almost the wealth should
20+
be flat and then shoot straight up when it approaches one
21+
"""
22+
n = 3000
23+
24+
# Almost Equal distribution
25+
y = np.repeat(1, n) + np.random.normal(scale=0.0001, size=n)
26+
cum_people, cum_income = lorenz_curve(y)
27+
assert_allclose(cum_people, cum_income, rtol=1e-03)
28+
29+
# Very uneven distribution
30+
y = np.repeat(0.001, n)
31+
y[4] = 100000
32+
pop_cum, income_cum = lorenz_curve(y)
33+
expected_income_cum = np.repeat(0., n + 1)
34+
expected_income_cum[-1] = 1.
35+
assert_allclose(expected_income_cum, income_cum, atol=1e-4)
36+
37+
38+
def test_gini_coeff():
39+
"""
40+
Tests how the funciton `gini_coefficient` calculates the Gini coefficient
41+
with the Pareto and the Weibull distribution.
42+
43+
Analytically, we know that Pareto with parameter `a` has
44+
G = 1 / (2*a - 1)
45+
46+
Likewise, for the Weibull distribution with parameter `a` we know that
47+
G = 1 - 2**(-1/a)
48+
49+
"""
50+
n = 10000
51+
52+
# Tests Pareto: G = 1 / (2*a - 1)
53+
a = np.random.randint(2, 15)
54+
expected = 1 / (2 * a - 1)
55+
56+
y = (np.random.pareto(a, size=n) + 1) * 2
57+
coeff = gini_coefficient(y)
58+
assert_allclose(expected, coeff, rtol=1e-01)
59+
60+
# Tests Weibull: G = 1 - 2**(-1/a)
61+
a = np.random.randint(2, 15)
62+
expected = 1 - 2 ** (-1 / a)
63+
64+
y = np.random.weibull(a, size=n)
65+
coeff = gini_coefficient(y)
66+
assert_allclose(expected, coeff, rtol=1e-01)

0 commit comments

Comments
 (0)