-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_mae.py
213 lines (186 loc) · 5.95 KB
/
get_mae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# NN model
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras import regularizers
from tensorflow.keras.optimizers import SGD, Adam
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras import backend
from tensorflow.keras.models import model_from_json
from tensorflow.keras.models import load_model
from qml.representations import generate_coulomb_matrix
from qml.representations import generate_bob
import logging
import schnetpack as spk
from ase.io import read
from ase.db import connect
from ase.atoms import Atoms
from ase.calculators.dftb import Dftb
from ase.units import Hartree, Bohr
def complete_array(Aprop):
Aprop2 = []
for ii in range(len(Aprop)):
n1 = len(Aprop[ii])
if n1 == 23:
Aprop2.append(Aprop[ii])
else:
n2 = 23 - n1
Aprop2.append(np.concatenate((Aprop[ii], np.zeros(n2)), axis=None))
return Aprop2
def prepare_data(op):
# # read dataset
data_dir = '../'
properties = [
'RMSD',
'EAT',
'EMBD',
'EGAP',
'KSE',
'FermiEne',
'BandEne',
'NumElec',
'h0Ene',
'sccEne',
'3rdEne',
'RepEne',
'mbdEne',
'TBdip',
'TBeig',
'TBchg',
]
dataset = spk.data.AtomsData(data_dir + 'totgdb7x_pbe0.db', load_only=properties)
n = len(dataset)
print(n)
idx = np.arange(n)
np.random.seed(2314)
idx2 = np.random.permutation(idx)
# computing predicted property
logging.info("get predicted property")
AE, xyz, Z = [], [], []
EGAP, KSE, TPROP = [], [], []
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 = ([] for i in range(11))
atoms_data = []
for i in idx2[:n]:
atoms, props = dataset.get_properties(i)
AE.append(float(props['EAT']))
EGAP.append(float(props['EGAP']))
KSE.append(props['KSE'])
TPROP.append(float(props[op]))
xyz.append(atoms.get_positions())
Z.append(atoms.get_atomic_numbers())
p1.append(float(props['FermiEne']))
p2.append(float(props['BandEne']))
p3.append(float(props['NumElec']))
p4.append(float(props['h0Ene']))
p5.append(float(props['sccEne']))
p6.append(float(props['3rdEne']))
p7.append(float(props['RepEne']))
p8.append(float(props['mbdEne']))
p9.append(props['TBdip'])
p10.append(props['TBeig'])
p11.append(props['TBchg'])
atoms_data.append(atoms)
AE = np.array(AE)
EGAP = np.array(EGAP)
TPROP = np.array(TPROP)
atoms_data = np.array(atoms_data)
# Generate representations
# Coulomb matrix
xyz_reps = np.array(
[generate_coulomb_matrix(Z[mol], xyz[mol], sorting='unsorted') for mol in idx2]
)
TPROP2 = []
p1b, p2b, p11b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b = ([] for i in range(11))
for nn in idx2:
p1b.append(p1[nn])
p2b.append(p2[nn])
p3b.append(p3[nn])
p4b.append(p4[nn])
p5b.append(p5[nn])
p6b.append(p6[nn])
p7b.append(p7[nn])
p8b.append(p8[nn])
p9b.append(p9[nn].numpy())
p10b.append(p10[nn].numpy())
p11b.append(p11[nn].numpy())
TPROP2.append(TPROP[nn])
p11b = complete_array(p11b)
temp = []
for var in [p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b]:
var2 = np.array(var)
try:
_ = var2.shape[1]
except IndexError:
var2 = var2.reshape(-1, 1)
scaler = StandardScaler()
var3 = scaler.fit_transform(var2)
temp.append(var3)
p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b = temp
desc = []
dftb = []
for ii in range(len(idx2)):
desc.append(xyz_reps[ii])
dftb.append(
np.concatenate(
(
xyz_reps[ii],
p1b[ii],
p2b[ii],
p3b[ii],
p4b[ii],
p5b[ii],
p6b[ii],
p7b[ii],
p8b[ii],
np.linalg.norm(p9b[ii]),
p10b[ii],
p11b[ii],
),
axis=None,
)
)
desc = np.array(desc)
dftb = np.array(dftb)
return dftb, TPROP2, atoms_data
train_set = ['1000', '2000', '4000', '8000', '10000', '20000', '30000']
n_test = 41537
n_val = 1000
Repre, Target, atoms_data = prepare_data('EAT')
for n_train in train_set:
n_train = int(n_train)
X_test = np.array(Repre[-n_test:])
Y_train, Y_val, Y_test = (
np.array(Target[:n_train]),
np.array(Target[-n_test - n_val : -n_test]),
np.array(Target[-n_test:]),
)
Y_train = Y_train.reshape(-1, 1)
Y_val = Y_val.reshape(-1, 1)
Y_test = Y_test.reshape(-1, 1)
model = load_model('standard/%s' % n_train + '/model.h5')
y_test = model.predict(X_test) # in eV
MAE_PROP = float(mean_absolute_error(Y_test, y_test))
MSE_PROP = float(mean_squared_error(Y_test, y_test))
STD_PROP = float(Y_test.std())
out2 = open('standard/%s/errors.dat' % n_train, 'w')
out2.write(
'{:>24}'.format(STD_PROP)
+ '{:>24}'.format(MAE_PROP)
+ '{:>24}'.format(MSE_PROP)
+ "\n"
)
out2.close()
# writing ouput for comparing values
dtest = np.array(Y_test - y_test)
format_list1 = ['{:16f}' for item1 in Y_test[0]]
s = ' '.join(format_list1)
ctest = open('standard/%s/comp.dat' % n_train, 'w')
for ii in range(0, len(Y_test)):
ctest.write(
s.format(*Y_test[ii]) + s.format(*y_test[ii]) + s.format(*dtest[ii]) + '\n'
)
ctest.close()