-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel_nn.py
365 lines (308 loc) · 9.55 KB
/
kernel_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# NN model
import numpy as np
import logging
import schnetpack as spk
import pdb
from os import mkdir, chdir, getcwd
from qml.kernels import gaussian_kernel
from qml.representations import generate_coulomb_matrix
from tensorflow.keras import regularizers, backend
from tensorflow.keras.models import Sequential
from tensorflow.keras.initializers import HeNormal
from tensorflow.keras.layers import (
Dense,
BatchNormalization,
Conv1D,
MaxPooling1D,
GlobalMaxPooling1D,
)
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import Callback, ReduceLROnPlateau
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
class LearningRateMonitor(Callback):
# start of training
def on_train_begin(self, logs={}):
self.lrates = list()
# end of each training epoch
def on_epoch_end(self, epoch, logs={}):
# get and store the learning rate
lrate = float(backend.get_value(self.model.optimizer.lr))
self.lrates.append(lrate)
def complete_array(Aprop):
Aprop2 = []
for ii in range(len(Aprop)):
n1 = len(Aprop[ii])
if n1 == 23:
Aprop2.append(Aprop[ii])
else:
n2 = 23 - n1
Aprop2.append(np.concatenate((Aprop[ii], np.zeros(n2)), axis=None))
return Aprop2
def prepare_data(op):
# # read dataset
properties = [
'RMSD',
'EAT',
'EMBD',
'EGAP',
'KSE',
'FermiEne',
'BandEne',
'NumElec',
'h0Ene',
'sccEne',
'3rdEne',
'RepEne',
'mbdEne',
'TBdip',
'TBeig',
'TBchg',
]
try:
data_dir = '/scratch/ws/1/medranos-DFTB/props/dftb/data/n1-2/'
dataset = spk.data.AtomsData(
data_dir + 'totgdb7x_pbe0.db', load_only=properties
)
except:
data_dir = '../'
dataset = spk.data.AtomsData(
data_dir + 'totgdb7x_pbe0.db', load_only=properties
)
n = len(dataset)
idx = np.arange(n)
np.random.seed(2314)
idx2 = np.random.permutation(idx)
# computing predicted property
logging.info("get predicted property")
AE, xyz, Z = [], [], []
EGAP, KSE, TPROP = [], [], []
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 = ([] for i in range(11))
atoms_data = []
for i in idx2[:n]:
atoms, props = dataset.get_properties(i)
AE.append(float(props['EAT']))
EGAP.append(float(props['EGAP']))
KSE.append(props['KSE'])
TPROP.append(float(props[op]))
xyz.append(atoms.get_positions())
Z.append(atoms.get_atomic_numbers())
p1.append(float(props['FermiEne']))
p2.append(float(props['BandEne']))
p3.append(float(props['NumElec']))
p4.append(float(props['h0Ene']))
p5.append(float(props['sccEne']))
p6.append(float(props['3rdEne']))
p7.append(float(props['RepEne']))
p8.append(float(props['mbdEne']))
p9.append(props['TBdip'])
p10.append(props['TBeig'])
p11.append(props['TBchg'])
atoms_data.append(atoms)
AE = np.array(AE)
EGAP = np.array(EGAP)
TPROP = np.array(TPROP)
atoms_data = np.array(atoms_data)
# Generate representations
# Coulomb matrix
xyz_reps = np.array(
[generate_coulomb_matrix(Z[mol], xyz[mol], sorting='unsorted') for mol in idx2]
)
TPROP2 = []
p1b, p2b, p11b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b = ([] for i in range(11))
for nn in idx2:
p1b.append(p1[nn])
p2b.append(p2[nn])
p3b.append(p3[nn])
p4b.append(p4[nn])
p5b.append(p5[nn])
p6b.append(p6[nn])
p7b.append(p7[nn])
p8b.append(p8[nn])
p9b.append(p9[nn].numpy())
p10b.append(p10[nn].numpy())
p11b.append(p11[nn].numpy())
TPROP2.append(TPROP[nn])
p11b = complete_array(p11b)
temp = []
for var in [p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b]:
var2 = np.array(var)
var2 = var2.reshape(-1, 1)
scaler = StandardScaler()
var3 = scaler.fit_transform(var2)
temp.append(var3)
p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b = temp
reps2 = []
for ii in range(len(idx2)):
reps2.append(
np.concatenate(
(
xyz_reps[ii],
p1b[ii],
p2b[ii],
p3b[ii],
p4b[ii],
p5b[ii],
p6b[ii],
p7b[ii],
p8b[ii],
np.linalg.norm(p9b[ii]),
p10b[ii],
p11b[ii],
),
axis=None,
)
)
return np.array(reps2), TPROP2, atoms_data
def fit_model_dense(K_train, K_val, K_test, Y_val, Y_train, patience=1000):
n_input = K_train.shape[0]
n_output = int(1)
# define model
model = Sequential()
initializer = HeNormal()
input_len = [2000, 1]
model.add(
Conv1D(
filters=32,
kernel_size=15,
input_shape=input_len,
activation='elu',
kernel_initializer=initializer,
kernel_regularizer=regularizers.l2(0.001),
)
)
model.add(MaxPooling1D(pool_size=4))
model.add(
Conv1D(
filters=16,
kernel_size=15,
strides=2,
input_shape=input_len,
activation='elu',
kernel_initializer=initializer,
kernel_regularizer=regularizers.l2(0.001),
)
)
model.add(MaxPooling1D(pool_size=2))
model.add(
Conv1D(
filters=8,
kernel_size=3,
input_shape=input_len,
activation='elu',
kernel_initializer=initializer,
kernel_regularizer=regularizers.l2(0.001),
)
)
model.add(MaxPooling1D(pool_size=4))
model.add(
Conv1D(
filters=1,
kernel_size=3,
strides=2,
input_shape=input_len,
activation='elu',
kernel_initializer=initializer,
kernel_regularizer=regularizers.l2(0.001),
)
)
model.add(GlobalMaxPooling1D())
model.add(Dense(1, activation='linear'))
# compile model
opt = Adam(learning_rate=0.01)
model.compile(loss='mse', optimizer=opt, metrics=['mae'])
# fit model
rlrp = ReduceLROnPlateau(
monitor='val_loss', factor=0.5, patience=patience, min_delta=1e-5, min_lr=1e-6
)
lrm = LearningRateMonitor()
K_train.shape = (2000, 2000, 1)
K_val.shape = (2000, 2000, 1)
history = model.fit(
K_train,
Y_train,
validation_data=(K_val, Y_val),
batch_size=32,
epochs=20000,
verbose=1,
callbacks=[rlrp, lrm],
)
return (model, lrm.lrates, history.history['loss'], history.history['mae'])
def plotting_results(model, K_test, testy):
# applying nn model
K_test.shape = (2000, 2000, 1)
y_test = model.predict(K_test)
testy.shape = (testy.shape[0], 1)
# y_test = y_scaler.inverse_transform(y_test)
MAE_PROP = float(mean_absolute_error(testy, y_test))
MSE_PROP = float(mean_squared_error(testy, y_test))
STD_PROP = float(testy.std())
out2 = open('errors_test.dat', 'w')
out2.write(
'{:>24}'.format(STD_PROP)
+ '{:>24}'.format(MAE_PROP)
+ '{:>24}'.format(MSE_PROP)
+ "\n"
)
out2.close()
# writing ouput for comparing values
dtest = np.array(testy - y_test)
format_list1 = ['{:16f}']
s = ' '.join(format_list1)
ctest = open('comp-test.dat', 'w')
for ii in range(0, len(testy)):
ctest.write(
s.format(*testy[ii]) + s.format(*y_test[ii]) + s.format(*dtest[ii]) + '\n'
)
ctest.close()
Repre, Target, atoms_data = prepare_data('EAT')
Target = np.array(Target)
sigma = 158.495
gamma = 1.92823619e-05
n_test = 10000
n_val = 2000
train_set = [2000]
current_dir = getcwd()
for n_train in train_set:
chdir(current_dir + '/kernel/')
n_val = n_test = n_train
print('Trainset= {:}'.format(n_train))
try:
mkdir(str(n_train))
except FileExistsError:
pass
chdir(current_dir + '/kernel/' + str(n_train))
indices = np.arange(Repre.shape[0])
np.random.shuffle(indices)
Repre = Repre[indices]
Target = Target[indices]
X_train = np.array(Repre[:n_train])
X_val = np.array(Repre[-n_test - n_val : -n_test])
X_test = np.array(Repre[:n_test])
Y_train, Y_val, Y_test = (
np.array(Target[:n_train]),
np.array(Target[-n_test - n_val : -n_test]),
np.array(Target[-n_test:]),
)
# Generate kernels
K_train = gaussian_kernel(X_train, X_train, sigma)
K_train[np.diag_indices_from(K_train)] += gamma # Regularizer
K_val = gaussian_kernel(X_val, X_val, sigma)
K_val[np.diag_indices_from(K_val)] += gamma # Regularizer
K_test = gaussian_kernel(X_test, X_test, sigma)
K_test[np.diag_indices_from(K_test)] += gamma # Regularizer
model, lr, history_loss, history_mae = fit_model_dense(
K_train, K_val, K_test, Y_val, Y_train
)
lhis = open('learning-history.dat', 'w')
for ii in range(0, len(lr)):
lhis.write(
'{:8d}'.format(ii)
+ '{:16f}'.format(lr[ii])
+ '{:16f}'.format(history_loss[ii])
+ '{:16f}'.format(history_mae[ii])
+ '\n'
)
lhis.close()
model.save("model.h5")
plotting_results(model, K_test, Y_test)