-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_kernel.py
209 lines (182 loc) · 5.39 KB
/
optimize_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# NN model
import numpy as np
from qml.representations import generate_coulomb_matrix
import logging
import pdb
import schnetpack as spk
from qml.math import cho_solve
from qml.kernels import gaussian_kernel
from scipy.optimize import dual_annealing
import random
def complete_array(Aprop):
Aprop2 = []
for ii in range(len(Aprop)):
n1 = len(Aprop[ii])
if n1 == 23:
Aprop2.append(Aprop[ii])
else:
n2 = 23 - n1
Aprop2.append(np.concatenate((Aprop[ii], np.zeros(n2)), axis=None))
return Aprop2
def prepare_data(op):
# # read dataset
data_dir = '../'
properties = [
'RMSD',
'EAT',
'EMBD',
'EGAP',
'KSE',
'FermiEne',
'BandEne',
'NumElec',
'h0Ene',
'sccEne',
'3rdEne',
'RepEne',
'mbdEne',
'TBdip',
'TBeig',
'TBchg',
]
dataset = spk.data.AtomsData(data_dir + 'totgdb7x_pbe0.db', load_only=properties)
n = len(dataset)
idx = np.arange(n)
np.random.seed(2314)
idx2 = np.random.permutation(idx)
# computing predicted property
logging.info("get predicted property")
AE, xyz, Z = [], [], []
EGAP, KSE, TPROP = [], [], []
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 = ([] for i in range(11))
atoms_data = []
for i in idx2[:n]:
atoms, props = dataset.get_properties(i)
AE.append(float(props['EAT']))
EGAP.append(float(props['EGAP']))
KSE.append(props['KSE'])
TPROP.append(float(props[op]))
xyz.append(atoms.get_positions())
Z.append(atoms.get_atomic_numbers())
p1.append(float(props['FermiEne']))
p2.append(float(props['BandEne']))
p3.append(float(props['NumElec']))
p4.append(float(props['h0Ene']))
p5.append(float(props['sccEne']))
p6.append(float(props['3rdEne']))
p7.append(float(props['RepEne']))
p8.append(float(props['mbdEne']))
p9.append(props['TBdip'])
p10.append(props['TBeig'])
p11.append(props['TBchg'])
atoms_data.append(atoms)
AE = np.array(AE)
EGAP = np.array(EGAP)
TPROP = np.array(TPROP)
atoms_data = np.array(atoms_data)
# Generate representations
# Coulomb matrix
xyz_reps = np.array(
[generate_coulomb_matrix(Z[mol], xyz[mol], sorting='unsorted') for mol in idx2]
)
TPROP2 = []
p1b, p2b, p11b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b = ([] for i in range(11))
for nn in idx2:
p1b.append(p1[nn])
p2b.append(p2[nn])
p3b.append(p3[nn])
p4b.append(p4[nn])
p5b.append(p5[nn])
p6b.append(p6[nn])
p7b.append(p7[nn])
p8b.append(p8[nn])
p9b.append(p9[nn].numpy())
p10b.append(p10[nn].numpy())
p11b.append(p11[nn].numpy())
TPROP2.append(TPROP[nn])
p11b = complete_array(p11b)
desc = []
dftb = []
for ii in range(len(idx2)):
desc.append(xyz_reps[ii])
dftb.append(
np.concatenate(
(
p1b[ii],
p2b[ii],
p3b[ii],
p4b[ii],
p5b[ii],
p6b[ii],
p7b[ii],
p8b[ii],
np.linalg.norm(p9b[ii]),
p10b[ii],
p11b[ii],
),
axis=None,
)
)
desc = np.array(desc)
dftb = np.array(dftb)
return (desc, dftb), TPROP2, atoms_data
Repre, Target, atoms_data = prepare_data('EAT')
desc = Repre[0]
dftb = Repre[1]
Target = np.array(Target)
def objective(params):
global desc
global dftb
global Target
sigma, gamma = params
print("sigma=", sigma)
print("gamma=", gamma)
n_test = 10000
n_val = 1000
n_train = 4000
try:
indices = np.arange(desc.shape[0])
np.random.shuffle(indices)
desc = desc[indices]
dftb = dftb[indices]
Target = Target[indices]
except Exception as e:
print(e)
pdb.set_trace()
X_train1 = np.array(desc[:n_train])
X_train2 = np.array(dftb[:n_train])
X_test1 = np.array(desc[-n_test:])
X_test2 = np.array(dftb[-n_test:])
X_train = []
X_test = []
for xt1, xt2 in zip(X_train1, X_train2):
X_train.append(np.concatenate((xt1, xt2)))
for t1, t2 in zip(X_test1, X_test2):
X_test.append(np.concatenate((t1, t2)))
X_train = np.array(X_train)
X_test = np.array(X_test)
Y_train, Y_val, Y_test = (
np.array(Target[:n_train]),
np.array(Target[-n_test - n_val : -n_test]),
np.array(Target[-n_test:]),
)
K = gaussian_kernel(X_train, X_train, sigma)
K[np.diag_indices_from(K)] += gamma # Regularizer
alpha = cho_solve(K, Y_train) # α=(K+λI)−1y
Ks = gaussian_kernel(X_test, X_train, sigma)
Y_predicted = np.dot(Ks, alpha)
res = np.mean(np.abs(Y_predicted - Y_test))
print(res)
return res
sigma_min = 100
sigma_max = 10000
gamma_min = 1e-8
gamma_max = 1e-3
bounds = [[sigma_min, sigma_max], [gamma_min, gamma_max]]
result = dual_annealing(objective, bounds, maxiter=500)
print('Status : %s' % result['message'])
print('Total Evaluations: %d' % result['nfev'])
# evaluate solution
solution = result['x']
evaluation = objective(solution)
print('Solution: f(%s) = %.5f' % (solution, evaluation))