-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslatm_len.py
134 lines (115 loc) · 3.21 KB
/
slatm_len.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# NN model
import sys
import os
import pdb
from os import path, mkdir, chdir
import warnings
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import pyplot
import torch
from torch.autograd import Variable
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, make_scorer, mean_absolute_error
from tensorflow.keras.layers import Dense, BatchNormalization
from tensorflow.keras.models import Sequential
from tensorflow.keras import regularizers
from tensorflow.keras.optimizers import SGD, Adam
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras import backend
from tensorflow.keras.models import model_from_json
from tensorflow.keras.models import load_model
from qml.representations import (
generate_coulomb_matrix,
get_slatm_mbtypes,
generate_slatm,
generate_bob,
)
from tensorflow.keras.initializers import HeNormal
import logging
import schnetpack as spk
from ase.io import read
from ase.db import connect
from ase.atoms import Atoms
from ase.calculators.dftb import Dftb
from ase.units import Hartree, Bohr
# monitor the learning rate
data_dir = '/scratch/ws/1/medranos-DFTB/raghav/data/'
properties = [
'RMSD',
'EAT',
'EMBD',
'EGAP',
'KSE',
'FermiEne',
'BandEne',
'NumElec',
'h0Ene',
'sccEne',
'3rdEne',
'RepEne',
'mbdEne',
'TBdip',
'TBeig',
'TBchg',
]
# data preparation
logging.info("get dataset")
dataset = spk.data.AtomsData(data_dir + 'qm7x-eq-n1.db', load_only=properties)
n = len(dataset)
print(n)
idx = np.arange(n)
np.random.seed(2314)
idx2 = np.random.permutation(idx)
# computing predicted property
logging.info("get predicted property")
AE, xyz, Z = [], [], []
EGAP, KSE, TPROP = [], [], []
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 = (
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
)
for i in idx2[:n]:
atoms, props = dataset.get_properties(i)
# AE.append(float(props['EAT']))
# EGAP.append(float(props['EGAP']))
# KSE.append(props['KSE'])
# TPROP.append(float(props[op]))
xyz.append(atoms.get_positions())
Z.append(atoms.get_atomic_numbers())
# # p1.append(float(props['FermiEne']))
# p2.append(float(props['BandEne']))
# p3.append(float(props['NumElec']))
# p4.append(float(props['h0Ene']))
# p5.append(float(props['sccEne']))
# p6.append(float(props['3rdEne']))
# p7.append(float(props['RepEne']))
# p8.append(float(props['mbdEne']))
# p9.append(props['TBdip'])
# p10.append(props['TBeig'])
# p11.append(props['TBchg'])
AE = np.array(AE)
EGAP = np.array(EGAP)
TPROP = np.array(TPROP)
# Generate representations
# SLATM
mbtypes = get_slatm_mbtypes([Z[mol] for mol in idx2])
x1 = generate_slatm(mbtypes=mbtypes, nuclear_charges=Z[0], coordinates=xyz[0])
print(len(x1))
x1 = generate_slatm(mbtypes=mbtypes, nuclear_charges=Z[1], coordinates=xyz[1])
print(len(x1))
x1 = generate_slatm(mbtypes=mbtypes, nuclear_charges=Z[2], coordinates=xyz[2])
print(len(x1))
x1 = generate_slatm(mbtypes=mbtypes, nuclear_charges=Z[idx2[-1]], coordinates=xyz[idx2[-1]])
print(len(x1))