-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtalos_EAT2.py
265 lines (213 loc) · 6.71 KB
/
talos_EAT2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# NN model
import sys
import os
import pdb
from os import path, mkdir, chdir
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
from tensorflow.keras.layers import Dense, BatchNormalization
from tensorflow.keras.models import Sequential
from tensorflow.keras import regularizers
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import Callback, ReduceLROnPlateau
from tensorflow.keras import backend
from tensorflow.keras.models import load_model
from tensorflow.keras.initializers import HeNormal
# from qml.representations import generate_coulomb_matrix
import logging
# import schnetpack as spk
from keras_tuner import RandomSearch
import tensorflow as tf
# monitor the learning rate
class LearningRateMonitor(Callback):
# start of training
def on_train_begin(self, logs={}):
self.lrates = list()
# end of each training epoch
def on_epoch_end(self, epoch, logs={}):
# get and store the learning rate
lrate = float(backend.get_value(self.model.optimizer.lr))
self.lrates.append(lrate)
def split_data(n_train, n_val, n_test, Repre, Target):
# Training
print("Perfoming training")
Target = np.array(Target)
X_train, X_val, X_test = (
np.array(Repre[:n_train]),
np.array(Repre[-n_test - n_val: -n_test]),
np.array(Repre[-n_test:]),
)
Y_train, Y_val, Y_test = (
np.array(Target[:n_train]),
np.array(Target[-n_test - n_val: -n_test]),
np.array(Target[-n_test:]),
)
# Data standardization
Y_train = Y_train.reshape(-1, 1)
Y_val = Y_val.reshape(-1, 1)
Y_test = Y_test.reshape(-1, 1)
return X_train, Y_train, X_val, Y_val, X_test, Y_test
def egap_model(hp):
model = Sequential()
initializer = HeNormal()
act1 = hp.Choice('activation1',['relu','sigmoid','tanh','elu'])
act2 = hp.Choice('activation3',['relu','sigmoid','tanh','elu'])
model.add(
Dense(
4,
input_dim=316,
activation=act1,
kernel_initializer=initializer,
kernel_regularizer=regularizers.l2(0.001),
)
)
model.add(
Dense(
32,
activation=act1,
kernel_initializer=initializer,
kernel_regularizer=regularizers.l2(0.001),
)
)
model.add(
Dense(
32,
activation=act2,
kernel_initializer=initializer,
kernel_regularizer=regularizers.l2(0.001),
)
)
model.add(Dense(1, activation='linear', kernel_initializer=initializer))
# compile model
opt = Adam(learning_rate=1e-5)
model.compile(loss='mse', optimizer=opt, metrics=['mae'])
# fit model
return model
def fit_model_dense(n_train, n_val, n_test, iX, iY, patience):
trainX, trainy, valX, valy, testX, testy, x_scaler, y_scaler = split_data(
n_train, n_val, n_test, iX, iY
)
n_input = int(len(iX[0]))
# n_output = int(len(iY[0]))
n_output = int(1)
p = {'activation1': ['relu','tanh','sigmoid','elu'],
'activation3': ['relu','tanh','sigmoid','elu'],
'batch_size': [16],
'epochs': [5000],
}
t = ta.Scan(x=trainX,
y=trainy,
model=egap_model,
params=p,
experiment_name='1')
return t
# return (
# model,
# lrm.lrates,
# history.history['loss'],
# history.history['mae'],
# testX,
# testy,
# )
def plotting_results(model, testX, testy):
# applying nn model
y_test = model.predict(testX)
# y_test = y_scaler.inverse_transform(y_test)
MAE_PROP = float(mean_absolute_error(testy, y_test))
MSE_PROP = float(mean_squared_error(testy, y_test))
STD_PROP = float(testy.std())
out2 = open('errors_test.dat', 'w')
out2.write(
'{:>24}'.format(STD_PROP)
+ '{:>24}'.format(MAE_PROP)
+ '{:>24}'.format(MSE_PROP)
+ "\n"
)
out2.close()
# writing ouput for comparing values
dtest = np.array(testy - y_test)
format_list1 = ['{:16f}' for item1 in testy[0]]
s = ' '.join(format_list1)
ctest = open('comp-test.dat', 'w')
for ii in range(0, len(testy)):
ctest.write(
s.format(*testy[ii]) + s.format(*y_test[ii]) + s.format(*dtest[ii]) + '\n'
)
ctest.close()
# save model and architecture to single file
def save_nnmodel(model):
model.save("model.h5")
print("Saved model to disk")
# load model
def load_nnmodel(idir):
model = load_model(idir + '/model.h5')
print("Loaded model from disk")
return model
def save_plot(n_train):
f = open("comp-test.dat", 'r')
lines = f.readlines()
x = []
y = []
mini = float(lines[0].split()[1])
maxi = float(lines[0].split()[1])
for line in lines:
x1, y1, z1 = line.split()
x.append(float(x1))
y.append(float(y1))
if float(x1) < mini:
mini = float(x1)
if float(x1) > maxi:
maxi = float(x1)
plt.plot(x, y, '.')
temp = np.arange(mini, maxi, 0.1)
plt.plot(temp, temp)
plt.xlabel("True EAT")
plt.ylabel("Predicted EAT")
plt.title('Results for training size of %s' % n_train)
plt.savefig('Results.png')
plt.close()
# prepare dataset
train_set = ['10000']
n_val = 1000
n_test = 10000
op = sys.argv[1]
# fit model and plot learning curves for a patience
patience = 500
current_dir = os.getcwd()
tuner = RandomSearch(
egap_model,
objective="val_mae",
max_trials=30,
executions_per_trial=2,
overwrite=True,
directory="my_dir2",
project_name="act",
seed=2314,
distribution_strategy=tf.distribute.MirroredStrategy()
)
print(tuner.search_space_summary())
iX = np.load('/scratch/ws/1/medranos-DFTB/raghav/data/iX.npy')
iY = np.load('/scratch/ws/1/medranos-DFTB/raghav/data/iY.npy')
n_train = 5000
n_val = 2000
n_test = 2000
trainX, trainY, valX, valY, testX, testY = split_data(
n_train, n_val, n_test, iX, iY
)
train_data = tf.data.Dataset.from_tensor_slices((trainX, trainY))
val_data = tf.data.Dataset.from_tensor_slices((valX, valY))
# The batch size must now be set on the Dataset objects.
batch_size = 16
train_data = train_data.batch(batch_size)
val_data = val_data.batch(batch_size)
# Disable AutoShard.
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
train_data = train_data.with_options(options)
val_data = val_data.with_options(options)
tuner.search(train_data=train_data, epochs=2000, validation_data=val_data)
models = tuner.get_best_models(num_models=2)
tuner.results_summary()
print(models)