-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemp.py
223 lines (190 loc) · 5.17 KB
/
temp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# NN model
import sys
import os
from os import chdir
import numpy as np
import pdb
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
from tensorflow.keras.layers import (
Dense,
Input,
Conv2D,
MaxPooling2D,
Concatenate,
GlobalMaxPooling2D,
)
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras import Model
from tensorflow.keras import backend
from tensorflow.keras.models import load_model
import logging
import schnetpack as spk
from qml.representations import generate_coulomb_matrix
# monitor the learning rate
class LearningRateMonitor(Callback):
# start of training
def on_train_begin(self, logs={}):
self.lrates = list()
# end of each training epoch
def on_epoch_end(self, epoch, logs={}):
# get and store the learning rate
lrate = float(backend.get_value(self.model.optimizer.lr))
self.lrates.append(lrate)
def complete_array(Aprop):
Aprop2 = []
for ii in range(len(Aprop)):
n1 = len(Aprop[ii])
if n1 == 23:
Aprop2.append(Aprop[ii])
else:
n2 = 23 - n1
Aprop2.append(np.concatenate((Aprop[ii], np.zeros(n2)), axis=None))
return Aprop2
# prepare train and test dataset
def prepare_data(op):
# # read dataset
data_dir = '../'
# data_dir = '/scratch/ws/1/medranos-DFTB/raghav/data/'
properties = [
'RMSD',
'EAT',
'EMBD',
'EGAP',
'KSE',
'FermiEne',
'BandEne',
'NumElec',
'h0Ene',
'sccEne',
'3rdEne',
'RepEne',
'mbdEne',
'TBdip',
'TBeig',
'TBchg',
]
# data preparation
logging.info("get dataset")
dataset = spk.data.AtomsData(data_dir + 'totgdb7x_pbe0.db', load_only=properties)
n = len(dataset)
print(n)
idx = np.arange(n)
np.random.seed(2314)
idx2 = np.random.permutation(idx)
# computing predicted property
logging.info("get predicted property")
AE, xyz, Z = [], [], []
EGAP, KSE, TPROP = [], [], []
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 = (
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
)
for i in idx2[:n]:
atoms, props = dataset.get_properties(i)
AE.append(float(props['EAT']))
EGAP.append(float(props['EGAP']))
KSE.append(props['KSE'])
TPROP.append(float(props[op]))
xyz.append(atoms.get_positions())
Z.append(atoms.get_atomic_numbers())
p1.append(float(props['FermiEne']))
p2.append(float(props['BandEne']))
p3.append(float(props['NumElec']))
p4.append(float(props['h0Ene']))
p5.append(float(props['sccEne']))
p6.append(float(props['3rdEne']))
p7.append(float(props['RepEne']))
p8.append(float(props['mbdEne']))
p9.append(props['TBdip'])
p10.append(props['TBeig'])
p11.append(props['TBchg'])
AE = np.array(AE)
EGAP = np.array(EGAP)
TPROP = np.array(TPROP)
# Generate representations
# Coulomb matrix
xyz_reps = np.array(
[generate_coulomb_matrix(Z[mol], xyz[mol], sorting='unsorted') for mol in idx2]
)
TPROP2 = []
p1b, p2b, p11b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b = (
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
)
for nn in idx2:
p1b.append(p1[nn])
p2b.append(p2[nn])
p3b.append(p3[nn])
p4b.append(p4[nn])
p5b.append(p5[nn])
p6b.append(p6[nn])
p7b.append(p7[nn])
p8b.append(p8[nn])
p9b.append(p9[nn].numpy())
p10b.append(p10[nn].numpy())
p11b.append(p11[nn].numpy())
TPROP2.append(TPROP[nn])
p11b = complete_array(p11b)
# Normalize the data property wise
temp = []
for var in [p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b]:
var2 = np.array(var)
try:
_ = var2.shape[1]
except IndexError:
var2 = var2.reshape(-1, 1)
scaler = MinMaxScaler()
var3 = scaler.fit_transform(var2)
temp.append(var3)
p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b = (
list(var) for var in temp
)
desc = []
dftb = []
for ii in range(len(idx2)):
desc.append(xyz_reps[ii])
dftb.append(
np.concatenate(
(
p1b[ii],
p2b[ii],
p3b[ii],
p4b[ii],
p5b[ii],
p6b[ii],
p7b[ii],
p8b[ii],
np.linalg.norm(p9b[ii]),
p10b[ii],
p11b[ii],
),
axis=None,
)
)
desc = np.array(desc)
dftb = np.array(dftb)
return [desc, dftb], TPROP2
iX, iY = prepare_data('EAT')
pdb.set_trace()