-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
333 lines (275 loc) · 9.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# NN model
import sys
import os
import pdb
from os import path, mkdir, chdir
import warnings
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import pyplot
import torch
from torch.autograd import Variable
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import (
mean_squared_error,
make_scorer,
mean_absolute_error
)
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras import regularizers
from tensorflow.keras.optimizers import SGD, Adam
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras import backend
from tensorflow.keras.models import model_from_json
from tensorflow.keras.models import load_model
from qml.representations import generate_coulomb_matrix
from qml.representations import generate_bob
import logging
import schnetpack as spk
from ase.io import read
from ase.db import connect
from ase.atoms import Atoms
from ase.calculators.dftb import Dftb
from ase.units import Hartree, Bohr
# monitor the learning rate
class LearningRateMonitor(Callback):
# start of training
def on_train_begin(self, logs={}):
self.lrates = list()
# end of each training epoch
def on_epoch_end(self, epoch, logs={}):
# get and store the learning rate
optimizer = self.model.optimizer
lrate = float(backend.get_value(self.model.optimizer.lr))
self.lrates.append(lrate)
def complete_array(Aprop):
Aprop2 = []
for ii in range(len(Aprop)):
n1 = len(Aprop[ii])
if n1 == 23:
Aprop2.append(Aprop[ii])
else:
n2 = 23 - n1
Aprop2.append(np.concatenate((Aprop[ii], np.zeros(n2)), axis=None))
return Aprop2
# prepare train and test dataset
def prepare_data(op):
# # read dataset
# data_dir = '/scratch/ws/1/medranos-DFTB/props/dftb/data/n1-2/'
data_dir = '../'
properties = ['RMSD', 'EAT', 'EMBD', 'EGAP', 'KSE', 'FermiEne',
'BandEne', 'NumElec', 'h0Ene', 'sccEne', '3rdEne',
'RepEne', 'mbdEne', 'TBdip', 'TBeig', 'TBchg']
# data preparation
logging.info("get dataset")
dataset = spk.data.AtomsData(
data_dir + 'totgdb7x_pbe0.db', load_only=properties)
n = len(dataset)
print(n)
idx = np.arange(n)
np.random.seed(2314)
idx2 = np.random.permutation(idx)
# computing predicted property
logging.info("get predicted property")
AE, xyz, Z = [], [], []
EGAP, KSE, TPROP = [], [], []
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 = ([] for i in range(11))
for i in idx2[:n]:
atoms, props = dataset.get_properties(i)
AE.append(float(props['EAT']))
EGAP.append(float(props['EGAP']))
KSE.append(props['KSE'])
TPROP.append(float(props[op]))
xyz.append(atoms.get_positions())
Z.append(atoms.get_atomic_numbers())
p1.append(float(props['FermiEne']))
p2.append(float(props['BandEne']))
p3.append(float(props['NumElec']))
p4.append(float(props['h0Ene']))
p5.append(float(props['sccEne']))
p6.append(float(props['3rdEne']))
p7.append(float(props['RepEne']))
p8.append(float(props['mbdEne']))
p9.append(props['TBdip'])
p10.append(props['TBeig'])
p11.append(props['TBchg'])
AE = np.array(AE)
EGAP = np.array(EGAP)
TPROP = np.array(TPROP)
# Generate representations
# Coulomb matrix
xyz_reps = np.array([generate_coulomb_matrix(
Z[mol], xyz[mol], sorting='unsorted') for mol in idx2])
TPROP2 = []
p1b, p2b, p11b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b = [
], [], [], [], [], [], [], [], [], [], []
for nn in idx2:
p1b.append(p1[nn])
p2b.append(p2[nn])
p3b.append(p3[nn])
p4b.append(p4[nn])
p5b.append(p5[nn])
p6b.append(p6[nn])
p7b.append(p7[nn])
p8b.append(p8[nn])
p9b.append(p9[nn].numpy())
p10b.append(p10[nn].numpy())
p11b.append(p11[nn].numpy())
TPROP2.append(TPROP[nn])
p11b = complete_array(p11b)
reps2 = []
for ii in range(len(idx2)):
reps2.append(xyz_reps[ii])
#reps2.append(np.concatenate((xyz_reps[ii], p1b[ii], p2b[ii], p3b[ii], p4b[ii], p5b[ii], p6b[ii], p7b[ii], p8b[ii], np.linalg.norm(p9b[ii]), p10b[ii], p11b[ii]), axis=None))
reps2 = np.array(reps2)
return reps2, TPROP2
def split_data(n_train, n_val, n_test, Repre, Target):
# Training
print("Perfoming training")
X_train, X_val, X_test = np.array(Repre[:n_train]), np.array(
Repre[-n_test - n_val:-n_test]), np.array(Repre[-n_test:])
Y_train, Y_val, Y_test = np.array(Target[:n_train]), np.array(
Target[-n_test - n_val:-n_test]), np.array(Target[-n_test:])
# Data standardization
Y_train = Y_train.reshape(-1, 1)
Y_val = Y_val.reshape(-1, 1)
Y_test = Y_test.reshape(-1, 1)
x_scaler = StandardScaler().fit(X_train)
y_scaler = StandardScaler().fit(Y_train)
return X_train, Y_train, X_val, Y_val, X_test, Y_test, x_scaler, y_scaler
# fit a model and plot learning curve
def fit_model_dense(n_train, n_val, n_test, iX, iY, patience):
trainX, trainy, valX, valy, testX, testy, x_scaler, y_scaler = split_data(
n_train, n_val, n_test, iX, iY)
n_input = int(len(iX[0]))
#n_output = int(len(iY[0]))
n_output = int(1)
n_inout = n_input + n_output
# define model
model = Sequential()
model.add(Dense(n_inout, input_dim=n_input, activation='tanh',
kernel_initializer='he_uniform',
kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01)))
model.add(Dense(units=256, activation='tanh'))
model.add(Dense(units=64, activation='tanh'))
model.add(Dense(units=256, activation='relu'))
model.add(Dense(n_output, activation='linear'))
# compile model
opt = Adam(learning_rate=0.01)
model.compile(loss='mse', optimizer=opt, metrics=['mae'])
# fit model
rlrp = ReduceLROnPlateau(
monitor='val_loss', factor=0.5,
patience=patience, min_delta=1E-5, min_lr=1E-6
)
lrm = LearningRateMonitor()
history = model.fit(
trainX, trainy, validation_data=(valX, valy),
batch_size=32, epochs=20000, verbose=2, callbacks=[rlrp, lrm]
)
return (
model,
lrm.lrates,
history.history['loss'],
history.history['mae'],
testX,
testy
)
def plotting_results(model, testX, testy):
# applying nn model
y_test = model.predict(testX) # in eV
#y_test = y_scaler.inverse_transform(y_test)
MAE_PROP = float(mean_absolute_error(testy, y_test))
MSE_PROP = float(mean_squared_error(testy, y_test))
STD_PROP = float(testy.std())
out2 = open('errors_test.dat', 'w')
out2.write('{:>24}'.format(STD_PROP) +
'{:>24}'.format(MAE_PROP) + '{:>24}'.format(MSE_PROP) + "\n")
out2.close()
# writing ouput for comparing values
dtest = np.array(testy - y_test)
format_list1 = ['{:16f}' for item1 in testy[0]]
s = ' '.join(format_list1)
ctest = open('comp-test.dat', 'w')
for ii in range(0, len(testy)):
ctest.write(
s.format(*testy[ii]) +
s.format(*y_test[ii]) +
s.format(*dtest[ii]) + '\n'
)
ctest.close()
# save model and architecture to single file
def save_nnmodel(model):
model.save("model.h5")
print("Saved model to disk")
# load model
def load_nnmodel(idir):
model = load_model(idir + '/model.h5')
print("Loaded model from disk")
return model
def save_plot(train_size):
import matplotlib.pyplot as plt
f = open("comp-test.dat", 'r')
lines = f.readlines()
x = []
y = []
mini = float(lines[0].split()[1])
maxi = float(lines[0].split()[1])
for line in lines:
x1, y1, z1 = line.split()
x.append(float(x1))
y.append(float(y1))
if float(x1) < mini:
mini = float(x1)
if float(x1) > maxi:
maxi = float(x1)
plt.plot(x, y, 'ro')
temp = np.arange(mini, maxi, 0.1)
plt.plot(temp, temp)
plt.xlabel("True EAT")
plt.ylabel("Predicted EAT")
plt.title("Result for train size of %s" % train_size)
plt.savefig('%s.png' % train_size)
# prepare dataset
train_set = ['20000', '30000']
n_val = 1000
n_test = 10000
op = sys.argv[1]
iX, iY = prepare_data(op)
# fit model and plot learning curves for a patience
patience = 100
current_dir = os.getcwd()
for ii in range(len(train_set)):
print('Trainset= {:}'.format(train_set[ii]))
chdir(current_dir)
try:
os.mkdir(str(train_set[ii]))
except:
pass
os.chdir(current_dir + '/' + str(train_set[ii]))
if sys.argv[2] == 'fit':
model, lr, loss, acc, testX, testy = fit_model_dense(
int(train_set[ii]), int(n_val), int(n_test), iX, iY, patience)
lhis = open('learning-history.dat', 'w')
for ii in range(0, len(lr)):
lhis.write(
'{:8d}'.format(ii) +
'{:16f}'.format(lr[ii]) +
'{:16f}'.format(loss[ii]) +
'{:16f}'.format(acc[ii]) + '\n'
)
lhis.close()
# Saving NN model
save_nnmodel(model)
else:
cfile = 'ncomp-test.dat'
# to evaluate new test
model = load_nnmodel(current_dir + '/' + str(train_set[ii]))
pdb.set_trace()
# Saving results
plotting_results(model, testX, testy)
save_plot(ii)