-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fchl.py
417 lines (352 loc) · 10.9 KB
/
train_fchl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# NN model
import sys
import os
import pdb
from os import path, mkdir, chdir
import warnings
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error
from qml.fchl import generate_representation
import logging
import schnetpack as spk
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
# monitor the learning rate
class LearningRateMonitor(Callback):
# start of training
def on_train_begin(self, logs={}):
self.lrates = list()
# end of each training epoch
def on_epoch_end(self, epoch, logs={}):
# get and store the learning rate
lrate = float(backend.get_value(self.model.optimizer.lr))
self.lrates.append(lrate)
def complete_array(Aprop):
Aprop2 = []
for ii in range(len(Aprop)):
n1 = len(Aprop[ii])
if n1 == 23:
Aprop2.append(Aprop[ii])
else:
n2 = 23 - n1
Aprop2.append(np.concatenate((Aprop[ii], np.zeros(n2)), axis=None))
return Aprop2
# prepare train and test dataset
def prepare_data(op):
# # read dataset
data_dir = '/scratch/ws/1/medranos-DFTBprojects/raghav/data/'
properties = [
'RMSD',
'EAT',
'EMBD',
'EGAP',
'KSE',
'FermiEne',
'BandEne',
'NumElec',
'h0Ene',
'sccEne',
'3rdEne',
'RepEne',
'mbdEne',
'TBdip',
'TBeig',
'TBchg',
]
# data preparation
logging.info("get dataset")
dataset = spk.data.AtomsData(data_dir + 'totgdb7x_pbe0.db', load_only=properties)
n = len(dataset)
print(n)
idx = np.arange(n)
np.random.seed(2314)
idx2 = np.random.permutation(idx)
# computing predicted property
logging.info("get predicted property")
AE, xyz, Z = [], [], []
EGAP, KSE, TPROP = [], [], []
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11 = (
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
)
for i in idx2[:n]:
atoms, props = dataset.get_properties(i)
AE.append(float(props['EAT']))
EGAP.append(float(props['EGAP']))
KSE.append(props['KSE'])
TPROP.append(float(props[op]))
xyz.append(atoms.get_positions())
Z.append(atoms.get_atomic_numbers())
p1.append(float(props['FermiEne']))
p2.append(float(props['BandEne']))
p3.append(float(props['NumElec']))
p4.append(float(props['h0Ene']))
p5.append(float(props['sccEne']))
p6.append(float(props['3rdEne']))
p7.append(float(props['RepEne']))
p8.append(float(props['mbdEne']))
p9.append(props['TBdip'])
p10.append(props['TBeig'])
p11.append(props['TBchg'])
AE = np.array(AE)
EGAP = np.array(EGAP)
TPROP = np.array(TPROP)
fchl = np.array([generate_representation(xyz[mol], Z[mol]) for mol in idx2])
TPROP2 = []
p1b, p2b, p11b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b = (
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
[],
)
for nn in idx2:
p1b.append(p1[nn])
p2b.append(p2[nn])
p3b.append(p3[nn])
p4b.append(p4[nn])
p5b.append(p5[nn])
p6b.append(p6[nn])
p7b.append(p7[nn])
p8b.append(p8[nn])
p9b.append(p9[nn].numpy())
p10b.append(p10[nn].numpy())
p11b.append(p11[nn].numpy())
TPROP2.append(TPROP[nn])
p11b = complete_array(p11b)
# Standardize the data property wise
temp = []
for var in [p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b]:
var2 = np.array(var)
try:
_ = var2.shape[1]
except IndexError:
var2 = var2.reshape(-1, 1)
scaler = StandardScaler()
var3 = scaler.fit_transform(var2)
temp.append(var3)
p1b, p2b, p3b, p4b, p5b, p6b, p7b, p8b, p9b, p10b, p11b = temp
reps2 = []
for ii in range(len(idx2)):
reps2.append(
np.concatenate(
(
fchl[ii].flatten(),
p1b[ii],
p2b[ii],
p3b[ii],
p4b[ii],
p5b[ii],
p6b[ii],
p7b[ii],
p8b[ii],
np.linalg.norm(p9b[ii]),
p10b[ii],
p11b[ii],
),
axis=None,
)
)
reps2 = np.array(reps2)
return reps2, TPROP2
def split_data(n_train, n_val, n_test, Repre, Target):
# Training
print("Perfoming training")
X_train, X_val, X_test = (
np.array(Repre[:n_train]),
np.array(Repre[-n_test - n_val : -n_test]),
np.array(Repre[-n_test:]),
)
Y_train, Y_val, Y_test = (
np.array(Target[:n_train]),
np.array(Target[-n_test - n_val : -n_test]),
np.array(Target[-n_test:]),
)
print(X_val.shape)
# Data standardization
Y_train = Y_train.reshape(-1, 1)
Y_val = Y_val.reshape(-1, 1)
Y_test = Y_test.reshape(-1, 1)
print(Y_val.shape)
x_scaler = StandardScaler().fit(X_train)
y_scaler = StandardScaler().fit(Y_train)
return X_train, Y_train, X_val, Y_val, X_test, Y_test, x_scaler, y_scaler
def init_weights(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform(m.weight)
m.bias.data.fill_(0.01)
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.linear_relu_stack = nn.Sequential(
nn.Linear(316,4),
nn.ELU(),
nn.Linear(4,32),
nn.ReLU(),
nn.Linear(32,32),
nn.ReLU(),
nn.Linear(32,1)
)
self.apply(init_weights)
# self.flatten = nn.Flatten(-1,0)
def forward(self, x):
# x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
device = "cuda"
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
mae = float(mean_absolute_error(pred,y))
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, mae = 0, 0
device = "cuda"
with torch.no_grad():
for batch, X, y in enumerate(dataloader):
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
mae += float(mean_absolute_error(pred,y))
test_loss /= num_batches
mae /= num_batches
return test_loss, mae
def fit_model_dense(n_train, n_val, n_test, iX, iY, patience):
batch_size = 16
X_train, Y_train, X_val, Y_val, X_test, Y_test, x_scaler, y_scaler = split_data(
n_train, n_val, n_test, iX, iY
)
train = torch.utils.data.TensorDataset(X_train,Y_train)
test = torch.utils.data.TensorDataset(X_test,Y_test)
valid = torch.utils.data.TensorDataset(X_val,Y_val)
# data loader
train_loader = DataLoader(train, batch_size = batch_size, shuffle = False)
test_loader = DataLoader(test, batch_size = batch_size, shuffle = False)
valid_loader = DataLoader(valid, batch_size = batch_size, shuffle = False)
device = "cuda"
model = NeuralNetwork().to(device)
loss_fn = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
scheduler = ReduceLROnPlateau(optimizer, factor=0.57, patience = 500, min_lr=1e-6)
epochs = 20000
val_losses, val_errors, lrates = [], [], []
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_loader, model, loss_fn, optimizer)
valid_loss, valid_mae = test(valid_loader, model, loss_fn)
print(f"Validation MAE: {valid_mae}\n")
scheduler.step(valid_mae)
val_losses.append(valid_loss)
val_errors.append(valid_mae)
lrates.append(optimizer.param_groups[0]['lr'])
test_mae = test(test_loader, model, loss_fn)
print(f"Finished training on train_size={n_train}\n Testing MAE = {test_mae}")
return (
model,
lrates,
val_losses,
val_errors,
test_loader
)
def plotting_results(model, test_loader):
# applying nn model
with torch.no_grad():
pred = model(test_loader.dataset.tensors[0])
y = test_loader.dataset.tensors[1]
test_loss = loss_fn(pred, y).item()
mae = float(mean_absolute_error(pred,y))
STD_PROP = float(pred.std())
out2 = open('errors_test.dat', 'w')
out2.write(
'{:>24}'.format(STD_PROP)
+ '{:>24}'.format(mae)
+ '{:>24}'.format(test_loss)
+ "\n"
)
out2.close()
# writing ouput for comparing values
dtest = np.array(pred - y)
Y_test = y.reshape(-1, 1)
format_list1 = ['{:16f}' for item1 in Y_test[0]]
s = ' '.join(format_list1)
ctest = open('comp-test.dat', 'w')
for ii in range(0, len(pred)):
ctest.write(
s.format(*pred[ii]) + s.format(*Y_test[ii]) + s.format(*dtest[ii]) + '\n'
)
ctest.close()
#Save as a plot
plt.plot(pred,y,'.')
mini = min(y).item()
maxi = max(y).item()
temp = np.arange(mini, maxi, 0.1)
plt.plot(temp, temp)
plt.xlabel("True EAT")
plt.ylabel("Predicted EAT")
plt.savefig('Result.png')
# prepare dataset
train_set = ['1000', '2000', '4000', '8000', '10000', '20000', '30000']
op = 'EAT'
n_val = 5000
iX, iY = prepare_data(op)
# fit model and plot learning curves for a patience
patience = 500
current_dir = os.getcwd()
for ii in range(len(train_set)):
n_test = len(iY) - train_set[ii] - n_val
print('Trainset= {:}'.format(train_set[ii]))
chdir(current_dir)
os.chdir(current_dir + '/withdft/fchl/')
try:
os.mkdir(str(train_set[ii]))
except:
pass
os.chdir(current_dir + '/withdft/fchl/' + str(train_set[ii]))
model, lr, loss, mae, test_loader = fit_model_dense(
int(train_set[ii]), int(n_val), int(n_test), iX, iY, patience
)
lhis = open('learning-history.dat', 'w')
for ii in range(0, len(lr)):
lhis.write(
'{:8d}'.format(ii)
+ '{:16f}'.format(lr[ii])
+ '{:16f}'.format(loss[ii])
+ '{:16f}'.format(mae[ii])
+ '\n'
)
lhis.close()
# Saving NN model
torch.save(model, 'model.pt')
# Saving results
plotting_results(model, test_loader)
save_plot(n_val)