-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path01_1_transfer_NAGuideR_pred.py
175 lines (140 loc) · 4.75 KB
/
01_1_transfer_NAGuideR_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# ---
# jupyter:
# jupytext:
# cell_metadata_filter: title,tags,-all
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# %% [markdown]
# # Transfer predictions from NAGuideR
#
# %% tags=["hide-input"]
import logging
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
import pimmslearn
import pimmslearn.models
import pimmslearn.pandas
from pimmslearn.io import datasplits
pimmslearn.plotting.make_large_descriptors(5)
logger = pimmslearn.logging.setup_logger(logging.getLogger('pimmslearn'))
# %% tags=["hide-input"]
# catch passed parameters
args = None
args = dict(globals()).keys()
# %% [markdown]
# Papermill script parameters:
# %% tags=["parameters"]
# files and folders
# Datasplit folder with data for experiment
folder_experiment: str = 'runs/example'
folder_data: str = '' # specify data directory if needed
file_format: str = 'csv' # file format of create splits, default pickle (csv)
identifer_str: str = '_all_' # identifier for prediction files to be filtered
dumps: list = None # list of dumps to be used
# %% [markdown]
# Some argument transformations
# %% tags=["hide-input"]
args = pimmslearn.nb.get_params(args, globals=globals())
args = pimmslearn.nb.args_from_dict(args)
args
# %% tags=["hide-input"]
files_out = {}
# %% [markdown]
# load data splits
# %% tags=["hide-input"]
data = datasplits.DataSplits.from_folder(
args.data, file_format=args.file_format)
# %% [markdown]
# Validation and test data split of simulated missing values
# %% tags=["hide-input"]
val_pred_fake_na = data.val_y.to_frame(name='observed')
val_pred_fake_na
# %% tags=["hide-input"]
test_pred_fake_na = data.test_y.to_frame(name='observed')
test_pred_fake_na.describe()
# %% tags=["hide-input"]
# Find and load prediction files, filter for validation and test data
# %% tags=["hide-input"]
if args.dumps is not None:
entire_pred = [Path(s) for s in args.dumps.split(',')]
else:
entire_pred = list(file for file in args.out_preds.iterdir()
if '_all_' in str(file))
entire_pred
# %% tags=["hide-input"]
mask = data.train_X.unstack().isna().stack()
idx_real_na = mask.index[mask]
idx_real_na = (idx_real_na
.drop(val_pred_fake_na.index)
.drop(test_pred_fake_na.index))
for fpath in entire_pred:
logger.info(f"Load {fpath = }")
col_name = fpath.stem.split('_all_')[-1]
pred = pd.read_csv(fpath, index_col=[1, 0])
val_pred_fake_na[col_name] = pred
fname = args.out_preds / f'pred_val_{col_name}.csv'
files_out[fname.name] = fname.as_posix()
val_pred_fake_na[['observed', col_name]].to_csv(fname)
logger.info(f"Save {fname = }")
test_pred_fake_na[col_name] = pred
fname = args.out_preds / f'pred_test_{col_name}.csv'
files_out[fname.name] = fname.as_posix()
test_pred_fake_na[['observed', col_name]].to_csv(fname)
logger.info(f"Save {fname = }")
# hacky, but works:
pred_real_na = (pd.Series(0, index=idx_real_na, name='placeholder')
.to_frame()
.join(pred, how='left')
.drop('placeholder', axis=1))
# pred_real_na.name = 'intensity'
fname = args.out_preds / f'pred_real_na_{col_name}.csv'
files_out[fname.name] = fname.as_posix()
pred_real_na.to_csv(fname)
logger.info(f"Save {fname = }")
# del pred
# %% tags=["hide-input"]
val_pred_fake_na
# %% [markdown]
# Metrics for simulated missing values (NA)
# %% tags=["hide-input"]
# papermill_description=metrics
d_metrics = pimmslearn.models.Metrics()
# %% tags=["hide-input"]
added_metrics = d_metrics.add_metrics(val_pred_fake_na.dropna(how='all', axis=1), 'valid_fake_na')
pd.DataFrame(added_metrics)
# %% [markdown]
# ## Test Datasplit
# %% tags=["hide-input"]
added_metrics = d_metrics.add_metrics(test_pred_fake_na.dropna(how='all', axis=1), 'test_fake_na')
pd.DataFrame(added_metrics)
# %% tags=["hide-input"]
metrics_df = pimmslearn.models.get_df_from_nested_dict(
d_metrics.metrics, column_levels=['model', 'metric_name']).T
metrics_df
# %% tags=["hide-input"]
order_methods = metrics_df.loc[pd.IndexSlice[:,
'MAE'], 'valid_fake_na'].sort_values()
order_methods
# %% tags=["hide-input"]
top_5 = ['observed', *order_methods.droplevel(-1).index[:6]]
top_5
# %% tags=["hide-input"]
fig, ax = plt.subplots(figsize=(8, 2))
ax, errors_bind = pimmslearn.plotting.errors.plot_errors_binned(
val_pred_fake_na[top_5],
ax=ax,
)
fname = args.out_figures / 'NAGuideR_errors_per_bin_val.png'
files_out[fname.name] = fname.as_posix()
pimmslearn.savefig(ax.get_figure(), fname)
# %% tags=["hide-input"]
files_out